File size: 16,651 Bytes
064a25d e4fbfab 2bd6eac 064a25d effa819 e4fbfab 6f35e8c 8aa409a 7030e08 e4fbfab effa819 e4fbfab 8769306 0212e2c 8769306 cc58789 7762bc9 d18dba3 7762bc9 cc58789 96b4442 cc58789 d18dba3 cc58789 d18dba3 7762bc9 d18dba3 7762bc9 d18dba3 7762bc9 96b4442 7fbd224 96b4442 e4fbfab 7762bc9 e4fbfab 8dd2873 e4fbfab 8dd2873 e4fbfab 618cd91 e4fbfab 8dd2873 e4fbfab 618cd91 5184bfe 8769306 e4fbfab 7edb958 effa819 618cd91 e4fbfab effa819 2d3ae25 effa819 fbcd22d effa819 96b4442 effa819 96b4442 39a6a86 7762bc9 8769306 7762bc9 39a6a86 effa819 39a6a86 effa819 39a6a86 effa819 7762bc9 39a6a86 96b4442 7762bc9 8769306 39a6a86 96b4442 8769306 96b4442 cc58789 8769306 96b4442 8769306 96b4442 8769306 96b4442 2bd6eac effa819 e4fbfab 96b4442 39a6a86 96b4442 e4fbfab d5c7130 8dd2873 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import streamlit as st
import hopsworks
import pandas as pd
import os
import time
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import altair as alt
import api
# Constants
DATA_DIR = "data"
TIMESTAMP_FILE = "last_download_time.txt"
# Initialize Hopsworks connection
def connect_to_hopsworks():
st.write("Connecting to Hopsworks...")
project_name = "id2223AirQuality"
HOPSWORKS_API_KEY = os.getenv("HOPSWORKS_API_KEY")
print(f"HOPSWORKS_API_KEY {HOPSWORKS_API_KEY}")
project = hopsworks.login(project="id2223AirQuality", api_key_value = os.getenv('HOPSWORKS_API_KEY'))
return project
# Fetch data from Hopsworks feature group
def fetch_data_from_feature_group(project, feature_group_name, version):
feature_store = project.get_feature_store()
feature_group = feature_store.get_feature_group(name=feature_group_name, version=version)
data = feature_group.read()
return data
# Save data locally
def save_data_locally(data, filename):
os.makedirs(DATA_DIR, exist_ok=True)
filepath = os.path.join(DATA_DIR, filename)
data.to_csv(filepath, index=False)
# Save timestamp
timestamp_path = os.path.join(DATA_DIR, TIMESTAMP_FILE)
with open(timestamp_path, "w") as f:
f.write(str(datetime.now()))
return filepath
# Load local data
def load_local_data(filename):
filepath = os.path.join(DATA_DIR, filename)
if os.path.exists(filepath):
return pd.read_csv(filepath)
else:
return None
# Check if local data is valid
def is_local_data_valid():
timestamp_path = os.path.join(DATA_DIR, TIMESTAMP_FILE)
if not os.path.exists(timestamp_path):
return False
try:
with open(timestamp_path, "r") as f:
last_download_time = datetime.fromisoformat(f.read().strip())
# Check if the data is more than a day old
if datetime.now() - last_download_time > timedelta(days=1):
return False
return True
except Exception as e:
st.warning(f"Error reading timestamp: {e}")
return False
def get_buses():
bus_df = st.session_state.data[["trip_id", "route_long_name", "route_short_name"]]
bus_df = bus_df.drop_duplicates()
bus_list = bus_df[["route_long_name", "route_short_name"]]
bus_list = bus_list.drop_duplicates()
short_bus_list = list(pd.unique(bus_df["route_short_name"]))
return bus_df, bus_list, short_bus_list
print(data["trip_id"].nunique())
result = []
data["datetime"] = pd.to_datetime(data["datetime"])
for _, group in data.groupby(['route_id', 'stop_name']):
# Initialize a list to store rows that are not duplicates
filtered_rows = []
last_row = None
for idx, row in group.iterrows():
if last_row is None or (row['datetime'] - last_row['datetime'] > pd.Timedelta(minutes = 3)):
# Keep the row if it's the first or sufficiently far apart in time
filtered_rows.append(row)
last_row = row
# Add filtered rows to the result
result.extend(filtered_rows)
filtered_df = pd.DataFrame(result)
# Return the filtered dataframe
print(filtered_df["trip_id"].nunique())
return filtered_df
def plot_graph_title(plot_df, stop, time):
#Nu vill vi plotta!
#TODO ska den bara visa de stopp man vill eller alla?
categories = {0 : 'Empty',
1: 'Many seats available',
2:'Few seats available',
3:'Standing room only',
4:'Crushed standing room',
5: 'Full'}
plot_df = plot_df[["datetime", "vehicle_occupancystatus", "stop_name", "route_id"]]
plot_df = plot_df.sort_values("datetime")
#plot_df = plot_df.set_index("datetime")
plot_df["Occupancy"] = plot_df["vehicle_occupancystatus"].map(categories)
# Explicitly set the order for Y_category
category_order = list(categories.values()) # ['Empty', 'Many seats available', ..., 'Full']
category_order.reverse()
#st.line_chart(plot_df)
# Create the Altair chart
chart = alt.Chart(plot_df).mark_line(point=True, interpolate="step-after").encode(
x=alt.X('stop_name:N', title="Stop name", sort=plot_df["stop_name"]), # Use column name as string
y=alt.Y('Occupancy:N', title="Vehicle Occupancy Status (Categories)", sort=category_order, scale=alt.Scale(domain=category_order)), # Treat Y as categorical
tooltip=["datetime", 'stop_name', 'Occupancy'] # Add tooltips for interactivity
).properties(
title=f"Vehicle Occupancy For Bus arriving at {stop} at {time}"
)
st.altair_chart(chart, use_container_width=True)
def visualize(filtered_data, stop_name):
import folium
from streamlit_folium import st_folium
categories = {0 : 'Empty',
1: 'Many seats available',
2:'Few seats available',
3:'Standing room only',
4:'Crushed standing room',
5: 'Full'}
legend_html = '''
<style>
.legend-box {
position: relative;
width: 250px;
background-color: white;
padding: 10px;
border: 2px solid grey;
border-radius: 5px;
font-size: 14px;
}
.legend-box div {
margin-bottom: 5px;
}
.legend-box i {
width: 20px;
height: 10px;
display: inline-block;
margin-right: 5px;
}
</style>
<div class="legend-box">
<b>Occupancy Legend:</b><br>
<div><i style="background: green;"></i>Empty</div>
<div><i style="background: blue;"></i>Many seats available</div>
<div><i style="background: purple;"></i>Few seats available</div>
<div><i style="background: pink;"></i>Standing room only</div>
<div><i style="background: orange;"></i>Crushed standing room</div>
<div><i style="background: red;"></i>Full</div>
<div><i style="background: black;"></i>Your stop</div>
</div>
'''
#st.markdown(legend_html, unsafe_allow_html=True)
# Create a folium map centered around a location
m = folium.Map(location=[filtered_data.iloc[0]["stop_lat"], filtered_data.iloc[0]["stop_lon"]], zoom_start=12)
sw = filtered_data[['stop_lat', 'stop_lon']].min().values.tolist()
ne = filtered_data[['stop_lat', 'stop_lon']].max().values.tolist()
m.fit_bounds([sw, ne])
# Add bus stop markers based on filtered data
for idx, row in filtered_data.iterrows():
if row["stop_name"] == stop_name:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="black", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 0:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="green", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 1:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="blue", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 2:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="purple", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 3:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="pink", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 4:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="orange", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 5:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="red", icon="bus-simple", prefix="fa")
).add_to(m)
else:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(icon="bus-simple", prefix="fa")
).add_to(m)
# Layout: Split screen into two columns
col1, col2 = st.columns([3, 1]) # Adjust proportions (3:1) as needed
# Display Folium map in the first column
with col1:
st_folium(m, width=700, height=500)
# Display Legend in the second column
with col2:
st.markdown(legend_html, unsafe_allow_html=True)
# Display the map
#st_folium(m, width=700, height=500)
def drop_the_duplicates(df):
df = df.drop_duplicates("datetime")
df["previous"] = df["datetime"].shift(1)
df = df[((df["datetime"] - df["previous"]) > timedelta(minutes=3)) | (df["previous"].isna())]
#df = df.drop_duplicates(["trip_id", "stop_name"])
return df
# Streamlit UI
def main():
st.title("Wheely Fun Times - Bus Occupancy Explorer")
# Initialize session state
if "hopsworks_project" not in st.session_state:
st.session_state.hopsworks_project = None
if "data" not in st.session_state:
st.session_state.data = None
# User inputs for feature group and version
#st.sidebar.title("Data Settings")
#feature_group_name = st.sidebar.text_input("Feature Group Name", value="predictions")
#version = st.sidebar.number_input("Feature Group Version", value=1, min_value=1)
#filename = st.sidebar.text_input("Local Filename", value="data.csv")
# Check for valid local data
if is_local_data_valid():
st.write("Using cached local data.")
st.session_state.data = load_local_data("data.csv")
if "first" not in st.session_state:
st.session_state.first = True
#st.session_state.data = remove_near_duplicates(st.session_state.data)
else:
# Fetch data if local data is invalid
if st.session_state.hopsworks_project is None:
st.write("Initializing Hopsworks connection...")
st.session_state.hopsworks_project = connect_to_hopsworks()
st.success("Connected to Hopsworks!")
project = st.session_state.hopsworks_project
data = fetch_data_from_feature_group(project, "predictions", 1)
#print(data.head())
filepath = save_data_locally(data, "data.csv")
st.session_state.data = data
st.success(f"Data fetched and saved locally at {filepath}")
buses_df, bus_list, short_bus = get_buses()
short_bus = sorted(short_bus)
# Sidebar section for searching buses
st.sidebar.title("Search for your desired bus")
# Create a multiselect dropdown in the sidebar
search = st.sidebar.selectbox(
"Search for your bus number:",
options=short_bus,
help="Select one bus to view details."
)
# Display the results
if search:
route = bus_list[bus_list["route_short_name"]==search]
long_names = list(pd.unique(route["route_long_name"]))
if len(long_names)==1:
bus = long_names[0]
st.write(f"### Selected Bus: {search} {bus}")
else:
bus = st.sidebar.selectbox(
"Pick bus route:",
options=long_names,
help="Select one bus to view details."
)
st.write(f"### Selected Bus: {search} {bus}")
# Streamlit checkbox to toggle bus direction
if "direction" not in st.session_state:
st.session_state.direction = False
# Streamlit button to toggle bus direction
if st.sidebar.button('Change Direction'):
# Toggle between 'North' and 'South'
st.session_state.direction = not st.session_state.direction
print(st.session_state.direction)
#Plocka alla aktuella trip_ids från buses
trips = buses_df[buses_df["route_long_name"]==bus]
bus_trips = st.session_state.data[st.session_state.data["route_long_name"]==bus]
bus_trips["datetime"] = pd.to_datetime(bus_trips["datetime"])
bus_trips["datetime"] = bus_trips["datetime"].dt.tz_convert(None)
stops = list(pd.unique(bus_trips["stop_name"]))
stop_choice = st.sidebar.selectbox(
"Select your bus stop:",
options=stops,
help="Select one bus stop to se occupancy."
)
#direction = st.sidebar.checkbox('Direction of bus', value=True)
today = datetime.now()
tomorrow = today + timedelta(days=1)
today = today.date()
tomorrow = tomorrow.date()
date_options = {
today.strftime("%d %B %Y") : today,
tomorrow.strftime("%d %B %Y") : tomorrow
}
day_choice = st.sidebar.radio("Select the day:", options=list(date_options.keys()))
# Add time input widgets in the sidebar
start_time = st.sidebar.time_input("Select a start time", value=None)
end_time = st.sidebar.time_input("Select an end time", value=None)
print(f"start time {type(start_time)}")
print(f"end time {type(end_time)}")
print(f"day {type(day_choice)}")
if start_time != None and end_time != None:
#TODO hur filtrera på tid?
st.write(f"Displaying buses between {start_time.strftime('%H:%M')} and {end_time.strftime('%H:%M')} the {day_choice}")
selected_trips = bus_trips[(bus_trips["datetime"] >= datetime.combine(date_options[day_choice], start_time))
& (bus_trips["datetime"] <= datetime.combine(date_options[day_choice], end_time))
& (bus_trips["direction_id"] == st.session_state.direction )
& (bus_trips["stop_name"] == stop_choice)]
trip_ids = list(pd.unique(selected_trips["trip_id"]))
#st.write(f"{len(trip_ids)} buses available")
chioce = selected_trips[selected_trips["stop_name"]==stop_choice]
#chioce.head()
#TODO ta bort stop_name:)
chioce = chioce[["trip_id", "stop_name", "datetime"]]
#Ev lägga stop_chioce i session_state
chioce = chioce.sort_values(by=["datetime"])
chioce = drop_the_duplicates(chioce)
st.write(f"{chioce['trip_id'].nunique()} buses available")
for idx, row in chioce.iterrows():
#st.write(f"The bus arrives at {row['stop_name']} at {row['datetime'].strftime('%H:%M')}")
plot_graph_title(st.session_state.data[st.session_state.data["trip_id"]==row["trip_id"]], row["stop_name"], row['datetime'].strftime('%H:%M'))
visualize(st.session_state.data[st.session_state.data["trip_id"]==row["trip_id"]], stop_choice)
else:
st.write("No buses selected. Please search in the sidebar.")
# Display data and graphs
#if st.session_state.data is not None:
#plot_graphs(st.session_state.data)
main()
# Visa alla busslinjer? Söka?
# Hur se riktning?
# Filtrera på busslinje och riktning
# Filtrera på tid
# Ska användaren ange tid
# Se alla unika trip ids
# Mappa position till stop
# Visa någon sorts graf för alla bussar inom den tiden
# Ska det vara för alla stopp eller bara de som användaren angivit att den ska åka |