WheelyFunTimes / app.py
DrDomedag's picture
Update app.py
0212e2c verified
raw
history blame
19.8 kB
import streamlit as st
import hopsworks
import pandas as pd
import os
import time
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import altair as alt
import api
# Constants
DATA_DIR = "data"
TIMESTAMP_FILE = "last_download_time.txt"
# Initialize Hopsworks connection
def connect_to_hopsworks():
st.write("Connecting to Hopsworks...")
project_name = "id2223AirQuality"
HOPSWORKS_API_KEY = os.getenv("HOPSWORKS_API_KEY")
print(f"HOPSWORKS_API_KEY {HOPSWORKS_API_KEY}")
project = hopsworks.login(project="id2223AirQuality", api_key_value = os.getenv('HOPSWORKS_API_KEY'))
return project
# Fetch data from Hopsworks feature group
def fetch_data_from_feature_group(project, feature_group_name, version):
feature_store = project.get_feature_store()
feature_group = feature_store.get_feature_group(name=feature_group_name, version=version)
data = feature_group.read()
return data
# Save data locally
def save_data_locally(data, filename):
os.makedirs(DATA_DIR, exist_ok=True)
filepath = os.path.join(DATA_DIR, filename)
data.to_csv(filepath, index=False)
# Save timestamp
timestamp_path = os.path.join(DATA_DIR, TIMESTAMP_FILE)
with open(timestamp_path, "w") as f:
f.write(str(datetime.now()))
return filepath
# Load local data
def load_local_data(filename):
filepath = os.path.join(DATA_DIR, filename)
if os.path.exists(filepath):
return pd.read_csv(filepath)
else:
return None
# Check if local data is valid
def is_local_data_valid():
timestamp_path = os.path.join(DATA_DIR, TIMESTAMP_FILE)
if not os.path.exists(timestamp_path):
return False
try:
with open(timestamp_path, "r") as f:
last_download_time = datetime.fromisoformat(f.read().strip())
# Check if the data is more than a day old
if datetime.now() - last_download_time > timedelta(days=1):
return False
return True
except Exception as e:
st.warning(f"Error reading timestamp: {e}")
return False
def get_buses():
bus_df = st.session_state.data[["trip_id", "route_long_name", "route_short_name"]]
bus_df = bus_df.drop_duplicates()
bus_list = bus_df[["route_long_name", "route_short_name"]]
bus_list = bus_list.drop_duplicates()
short_bus_list = list(pd.unique(bus_df["route_short_name"]))
return bus_df, bus_list, short_bus_list
# Function to remove duplicates
def remove_near_duplicates(data):
print(data["trip_id"].nunique())
result = []
data["datetime"] = pd.to_datetime(data["datetime"])
for _, group in data.groupby(['route_id', 'stop_name']):
# Initialize a list to store rows that are not duplicates
filtered_rows = []
last_row = None
for idx, row in group.iterrows():
if last_row is None or (row['datetime'] - last_row['datetime'] > pd.Timedelta(minutes = 3)):
# Keep the row if it's the first or sufficiently far apart in time
filtered_rows.append(row)
last_row = row
# Add filtered rows to the result
result.extend(filtered_rows)
filtered_df = pd.DataFrame(result)
# Return the filtered dataframe
print(filtered_df["trip_id"].nunique())
return filtered_df
def remove_duplicate_trips(df, route_id_col="route_id", trip_id_col="trip_id", datetime_col="datetime", time_window='3min'):
"""
Removes duplicate trips based on route_id and starting time proximity within a time window.
Parameters:
df (pd.DataFrame): Input DataFrame containing trip data.
route_id_col (str): Column name for route IDs.
trip_id_col (str): Column name for trip IDs.
datetime_col (str): Column name for departure times.
time_window (str): Time window for considering trips as duplicates (e.g., '3min').
Returns:
pd.DataFrame: Filtered DataFrame with duplicates removed.
"""
print(df["trip_id"].nunique())
# Ensure the datetime column is of datetime type
df[datetime_col] = pd.to_datetime(df[datetime_col])
# Sort by route_id and datetime for correct chronological order within each route
df = df.sort_values(by=[route_id_col, datetime_col])
# Calculate time differences between consecutive rows within each route_id group
df['time_diff'] = df.groupby(route_id_col)[datetime_col].diff().fillna(pd.Timedelta('0s'))
# Mark rows as duplicates if the time difference is within the time window
time_window_timedelta = pd.to_timedelta(time_window)
df['is_duplicate'] = df['time_diff'] <= time_window_timedelta
# Keep only the first row within each group of duplicates (based on time window)
df['keep'] = ~df.groupby(route_id_col)['is_duplicate'].transform('any')
# Filter rows: Keep only those that are marked as 'keep'
result = df[df['keep']].drop(columns=['time_diff', 'is_duplicate', 'keep'])
print(result["trip_id"].nunique())
return result
def plot_graph(plot_df):
#Nu vill vi plotta!
#TODO ska den bara visa de stopp man vill eller alla?
categories = {0 : 'Empty',
1: 'Many seats available',
2:'Few seats available',
3:'Standing room only',
4:'Crushed standing room',
5: 'Full'}
plot_df = plot_df[["datetime", "vehicle_occupancystatus", "stop_name", "route_id"]]
plot_df = plot_df.sort_values("datetime")
st.write(plot_df.head())
st.write(plot_df.tail())
#plot_df = plot_df.set_index("datetime")
plot_df["Occupancy"] = plot_df["vehicle_occupancystatus"].map(categories)
# Explicitly set the order for Y_category
category_order = list(categories.values()) # ['Empty', 'Many seats available', ..., 'Full']
category_order.reverse()
#st.line_chart(plot_df)
# Create the Altair chart
chart = alt.Chart(plot_df).mark_line(point=True, interpolate="step-after").encode(
x=alt.X('stop_name:N', title="Stop name"), # Use column name as string
y=alt.Y('Occupancy:N', title="Vehicle Occupancy Status (Categories)", sort=category_order, scale=alt.Scale(domain=category_order)), # Treat Y as categorical
tooltip=["datetime", 'stop_name', 'Occupancy'] # Add tooltips for interactivity
).properties(
title="Vehicle Occupancy Status Over Time"
)
st.altair_chart(chart, use_container_width=True)
def plot_graph_title(plot_df, stop, time):
#Nu vill vi plotta!
#TODO ska den bara visa de stopp man vill eller alla?
categories = {0 : 'Empty',
1: 'Many seats available',
2:'Few seats available',
3:'Standing room only',
4:'Crushed standing room',
5: 'Full'}
plot_df = plot_df[["datetime", "vehicle_occupancystatus", "stop_name", "route_id"]]
plot_df = plot_df.sort_values("datetime")
#plot_df = plot_df.set_index("datetime")
plot_df["Occupancy"] = plot_df["vehicle_occupancystatus"].map(categories)
# Explicitly set the order for Y_category
category_order = list(categories.values()) # ['Empty', 'Many seats available', ..., 'Full']
category_order.reverse()
#st.line_chart(plot_df)
# Create the Altair chart
chart = alt.Chart(plot_df).mark_line(point=True, interpolate="step-after").encode(
x=alt.X('stop_name:N', title="Stop name", sort=plot_df["stop_name"]), # Use column name as string
y=alt.Y('Occupancy:N', title="Vehicle Occupancy Status (Categories)", sort=category_order, scale=alt.Scale(domain=category_order)), # Treat Y as categorical
tooltip=["datetime", 'stop_name', 'Occupancy'] # Add tooltips for interactivity
).properties(
title=f"Vehicle Occupancy For Bus arriving at {stop} at {time}"
)
st.altair_chart(chart, use_container_width=True)
def visualize(filtered_data, stop_name):
import folium
from streamlit_folium import st_folium
categories = {0 : 'Empty',
1: 'Many seats available',
2:'Few seats available',
3:'Standing room only',
4:'Crushed standing room',
5: 'Full'}
legend_html = '''
<style>
.legend-box {
position: relative;
width: 250px;
background-color: white;
padding: 10px;
border: 2px solid grey;
border-radius: 5px;
font-size: 14px;
}
.legend-box div {
margin-bottom: 5px;
}
.legend-box i {
width: 20px;
height: 10px;
display: inline-block;
margin-right: 5px;
}
</style>
<div class="legend-box">
<b>Occupancy Legend:</b><br>
<div><i style="background: green;"></i>Empty</div>
<div><i style="background: blue;"></i>Many seats available</div>
<div><i style="background: purple;"></i>Few seats available</div>
<div><i style="background: pink;"></i>Standing room only</div>
<div><i style="background: orange;"></i>Crushed standing room</div>
<div><i style="background: red;"></i>Full</div>
<div><i style="background: black;"></i>Your stop</div>
</div>
'''
#st.markdown(legend_html, unsafe_allow_html=True)
# Create a folium map centered around a location
m = folium.Map(location=[filtered_data.iloc[0]["stop_lat"], filtered_data.iloc[0]["stop_lon"]], zoom_start=12)
sw = filtered_data[['stop_lat', 'stop_lon']].min().values.tolist()
ne = filtered_data[['stop_lat', 'stop_lon']].max().values.tolist()
m.fit_bounds([sw, ne])
# Add bus stop markers based on filtered data
for idx, row in filtered_data.iterrows():
if row["stop_name"] == stop_name:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="black", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 0:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="green", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 1:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="blue", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 2:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="purple", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 3:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="pink", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 4:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="orange", icon="bus-simple", prefix="fa")
).add_to(m)
elif row['vehicle_occupancystatus'] == 5:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(color="red", icon="bus-simple", prefix="fa")
).add_to(m)
else:
folium.Marker(
[row['stop_lat'], row['stop_lon']],
popup=f"Bus stop: {row['stop_name']} Bus occupancy: {categories[row['vehicle_occupancystatus']] }",
icon = folium.Icon(icon="bus-simple", prefix="fa")
).add_to(m)
# Layout: Split screen into two columns
col1, col2 = st.columns([3, 1]) # Adjust proportions (3:1) as needed
# Display Folium map in the first column
with col1:
st_folium(m, width=700, height=500)
# Display Legend in the second column
with col2:
st.markdown(legend_html, unsafe_allow_html=True)
# Display the map
#st_folium(m, width=700, height=500)
def drop_the_duplicates(df):
df = df.drop_duplicates("datetime")
df["previous"] = df["datetime"].shift(1)
df = df[((df["datetime"] - df["previous"]) > timedelta(minutes=3)) | (df["previous"].isna())]
#df = df.drop_duplicates(["trip_id", "stop_name"])
return df
# Streamlit UI
def main():
st.title("Wheely Fun Times - Bus Occupancy Explorer")
# Initialize session state
if "hopsworks_project" not in st.session_state:
st.session_state.hopsworks_project = None
if "data" not in st.session_state:
st.session_state.data = None
# User inputs for feature group and version
#st.sidebar.title("Data Settings")
#feature_group_name = st.sidebar.text_input("Feature Group Name", value="predictions")
#version = st.sidebar.number_input("Feature Group Version", value=1, min_value=1)
#filename = st.sidebar.text_input("Local Filename", value="data.csv")
# Check for valid local data
if is_local_data_valid():
st.write("Using cached local data.")
st.session_state.data = load_local_data("data.csv")
if "first" not in st.session_state:
st.session_state.first = True
#st.session_state.data = remove_near_duplicates(st.session_state.data)
else:
# Fetch data if local data is invalid
if st.session_state.hopsworks_project is None:
st.write("Initializing Hopsworks connection...")
st.session_state.hopsworks_project = connect_to_hopsworks()
st.success("Connected to Hopsworks!")
project = st.session_state.hopsworks_project
data = fetch_data_from_feature_group(project, "predictions", 1)
#print(data.head())
filepath = save_data_locally(data, "data.csv")
st.session_state.data = data
st.success(f"Data fetched and saved locally at {filepath}")
buses_df, bus_list, short_bus = get_buses()
short_bus = sorted(short_bus)
# Sidebar section for searching buses
st.sidebar.title("Search for your desired bus")
# Create a multiselect dropdown in the sidebar
search = st.sidebar.selectbox(
"Search for your bus number:",
options=short_bus,
help="Select one bus to view details."
)
# Display the results
if search:
route = bus_list[bus_list["route_short_name"]==search]
long_names = list(pd.unique(route["route_long_name"]))
if len(long_names)==1:
bus = long_names[0]
st.write(f"### Selected Bus: {search} {bus}")
else:
bus = st.sidebar.selectbox(
"Pick bus route:",
options=long_names,
help="Select one bus to view details."
)
st.write(f"### Selected Bus: {search} {bus}")
# Streamlit checkbox to toggle bus direction
if "direction" not in st.session_state:
st.session_state.direction = False
# Streamlit button to toggle bus direction
if st.sidebar.button('Change Direction'):
# Toggle between 'North' and 'South'
st.session_state.direction = not st.session_state.direction
print(st.session_state.direction)
#Plocka alla aktuella trip_ids från buses
trips = buses_df[buses_df["route_long_name"]==bus]
bus_trips = st.session_state.data[st.session_state.data["route_long_name"]==bus]
bus_trips["datetime"] = pd.to_datetime(bus_trips["datetime"])
bus_trips["datetime"] = bus_trips["datetime"].dt.tz_convert(None)
stops = list(pd.unique(bus_trips["stop_name"]))
stop_choice = st.sidebar.selectbox(
"Select your bus stop:",
options=stops,
help="Select one bus stop to se occupancy."
)
#direction = st.sidebar.checkbox('Direction of bus', value=True)
today = datetime.now()
tomorrow = today + timedelta(days=1)
today = today.date()
tomorrow = tomorrow.date()
date_options = {
today.strftime("%d %B %Y") : today,
tomorrow.strftime("%d %B %Y") : tomorrow
}
day_choice = st.sidebar.radio("Select the day:", options=list(date_options.keys()))
# Add time input widgets in the sidebar
start_time = st.sidebar.time_input("Select a start time", value=None)
end_time = st.sidebar.time_input("Select an end time", value=None)
print(f"start time {type(start_time)}")
print(f"end time {type(end_time)}")
print(f"day {type(day_choice)}")
if start_time != None and end_time != None:
#TODO hur filtrera på tid?
st.write(f"Displaying buses between {start_time.strftime('%H:%M')} and {end_time.strftime('%H:%M')} the {day_choice}")
selected_trips = bus_trips[(bus_trips["datetime"] >= datetime.combine(date_options[day_choice], start_time))
& (bus_trips["datetime"] <= datetime.combine(date_options[day_choice], end_time))
& (bus_trips["direction_id"] == st.session_state.direction )
& (bus_trips["stop_name"] == stop_choice)]
trip_ids = list(pd.unique(selected_trips["trip_id"]))
#st.write(f"{len(trip_ids)} buses available")
chioce = selected_trips[selected_trips["stop_name"]==stop_choice]
#chioce.head()
#TODO ta bort stop_name:)
chioce = chioce[["trip_id", "stop_name", "datetime"]]
#Ev lägga stop_chioce i session_state
chioce = chioce.sort_values(by=["datetime"])
chioce = drop_the_duplicates(chioce)
st.write(f"{chioce['trip_id'].nunique()} buses available")
for idx, row in chioce.iterrows():
#st.write(f"The bus arrives at {row['stop_name']} at {row['datetime'].strftime('%H:%M')}")
plot_graph_title(st.session_state.data[st.session_state.data["trip_id"]==row["trip_id"]], row["stop_name"], row['datetime'].strftime('%H:%M'))
visualize(st.session_state.data[st.session_state.data["trip_id"]==row["trip_id"]], stop_choice)
else:
st.write("No buses selected. Please search in the sidebar.")
# Display data and graphs
#if st.session_state.data is not None:
#plot_graphs(st.session_state.data)
main()
# Visa alla busslinjer? Söka?
# Hur se riktning?
# Filtrera på busslinje och riktning
# Filtrera på tid
# Ska användaren ange tid
# Se alla unika trip ids
# Mappa position till stop
# Visa någon sorts graf för alla bussar inom den tiden
# Ska det vara för alla stopp eller bara de som användaren angivit att den ska åka