Spaces:
Sleeping
Sleeping
File size: 1,334 Bytes
a0047d0 0dc240c 48a45d9 0dc240c 48a45d9 0dc240c 48a45d9 0dc240c 48a45d9 a0047d0 48a45d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from transformers import AutoTokenizer
import gradio as gr
import os
# Retrieve the Hugging Face token from secrets
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
def tokenize(input_text):
palmyra_x_003_tokens = len(palmyra_x_003_tokenizer(input_text, add_special_tokens=True)["input_ids"])
gpt2_tokens = len(gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"])
palmyra_x_004_tokens = len(palmyra_x_004_tokenizer(input_text, add_special_tokens=True)["input_ids"])
results = {
"Palmyra-X-004": palmyra_x_004_tokens,
"Palmyra-Fin & Med": palmyra_x_003_tokens,
"Palmyra-X-003": gpt2_tokens
}
# Sort the results in descending order based on token length
sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True)
return "\n".join([f"{model}: {tokens}" for model, tokens in sorted_results])
if __name__ == "__main__":
palmyra_x_003_tokenizer = AutoTokenizer.from_pretrained("wassemgtk/palmyra-x-003-tokenizer", token=huggingface_token)
gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2")
palmyra_x_004_tokenizer = AutoTokenizer.from_pretrained("wassemgtk/palmyra-x-004-tokenizer", token=huggingface_token)
iface = gr.Interface(fn=tokenize, inputs=gr.Textbox(label="Input Text", lines=19), outputs="text")
iface.launch() |