|
import streamlit as st |
|
from streamlit_chatbox import st_chatbox |
|
import tempfile |
|
|
|
|
|
import os |
|
import shutil |
|
|
|
from chains.local_doc_qa import LocalDocQA |
|
from configs.model_config import * |
|
import nltk |
|
from models.base import (BaseAnswer, |
|
AnswerResult,) |
|
import models.shared as shared |
|
from models.loader.args import parser |
|
from models.loader import LoaderCheckPoint |
|
|
|
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path |
|
|
|
|
|
def get_vs_list(): |
|
lst_default = ["新建知识库"] |
|
if not os.path.exists(KB_ROOT_PATH): |
|
return lst_default |
|
lst = os.listdir(KB_ROOT_PATH) |
|
if not lst: |
|
return lst_default |
|
lst.sort() |
|
return lst_default + lst |
|
|
|
|
|
embedding_model_dict_list = list(embedding_model_dict.keys()) |
|
llm_model_dict_list = list(llm_model_dict.keys()) |
|
|
|
|
|
def get_answer(query, vs_path, history, mode, score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD, |
|
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_conent: bool = True, |
|
chunk_size=CHUNK_SIZE, streaming: bool = STREAMING,): |
|
if mode == "Bing搜索问答": |
|
for resp, history in local_doc_qa.get_search_result_based_answer( |
|
query=query, chat_history=history, streaming=streaming): |
|
source = "\n\n" |
|
source += "".join( |
|
[f"""<details> <summary>出处 [{i + 1}] <a href="{doc.metadata["source"]}" target="_blank">{doc.metadata["source"]}</a> </summary>\n""" |
|
f"""{doc.page_content}\n""" |
|
f"""</details>""" |
|
for i, doc in |
|
enumerate(resp["source_documents"])]) |
|
history[-1][-1] += source |
|
yield history, "" |
|
elif mode == "知识库问答" and vs_path is not None and os.path.exists(vs_path): |
|
local_doc_qa.top_k = vector_search_top_k |
|
local_doc_qa.chunk_conent = chunk_conent |
|
local_doc_qa.chunk_size = chunk_size |
|
for resp, history in local_doc_qa.get_knowledge_based_answer( |
|
query=query, vs_path=vs_path, chat_history=history, streaming=streaming): |
|
source = "\n\n" |
|
source += "".join( |
|
[f"""<details> <summary>出处 [{i + 1}] {os.path.split(doc.metadata["source"])[-1]}</summary>\n""" |
|
f"""{doc.page_content}\n""" |
|
f"""</details>""" |
|
for i, doc in |
|
enumerate(resp["source_documents"])]) |
|
history[-1][-1] += source |
|
yield history, "" |
|
elif mode == "知识库测试": |
|
if os.path.exists(vs_path): |
|
resp, prompt = local_doc_qa.get_knowledge_based_conent_test(query=query, vs_path=vs_path, |
|
score_threshold=score_threshold, |
|
vector_search_top_k=vector_search_top_k, |
|
chunk_conent=chunk_conent, |
|
chunk_size=chunk_size) |
|
if not resp["source_documents"]: |
|
yield history + [[query, |
|
"根据您的设定,没有匹配到任何内容,请确认您设置的知识相关度 Score 阈值是否过小或其他参数是否正确。"]], "" |
|
else: |
|
source = "\n".join( |
|
[ |
|
f"""<details open> <summary>【知识相关度 Score】:{doc.metadata["score"]} - 【出处{i + 1}】: {os.path.split(doc.metadata["source"])[-1]} </summary>\n""" |
|
f"""{doc.page_content}\n""" |
|
f"""</details>""" |
|
for i, doc in |
|
enumerate(resp["source_documents"])]) |
|
history.append([query, "以下内容为知识库中满足设置条件的匹配结果:\n\n" + source]) |
|
yield history, "" |
|
else: |
|
yield history + [[query, |
|
"请选择知识库后进行测试,当前未选择知识库。"]], "" |
|
else: |
|
answer_result_stream_result = local_doc_qa.llm_model_chain( |
|
{"prompt": query, "history": history, "streaming": streaming}) |
|
|
|
for answer_result in answer_result_stream_result['answer_result_stream']: |
|
resp = answer_result.llm_output["answer"] |
|
history = answer_result.history |
|
history[-1][-1] = resp + ( |
|
"\n\n当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。" if mode == "知识库问答" else "") |
|
yield history, "" |
|
logger.info(f"flagging: username={FLAG_USER_NAME},query={query},vs_path={vs_path},mode={mode},history={history}") |
|
|
|
|
|
def get_vector_store(vs_id, files, sentence_size, history, one_conent, one_content_segmentation): |
|
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store") |
|
filelist = [] |
|
if not os.path.exists(os.path.join(KB_ROOT_PATH, vs_id, "content")): |
|
os.makedirs(os.path.join(KB_ROOT_PATH, vs_id, "content")) |
|
qa = st.session_state.local_doc_qa |
|
if qa.llm_model_chain and qa.embeddings: |
|
if isinstance(files, list): |
|
for file in files: |
|
filename = os.path.split(file.name)[-1] |
|
shutil.move(file.name, os.path.join( |
|
KB_ROOT_PATH, vs_id, "content", filename)) |
|
filelist.append(os.path.join( |
|
KB_ROOT_PATH, vs_id, "content", filename)) |
|
vs_path, loaded_files = qa.init_knowledge_vector_store( |
|
filelist, vs_path, sentence_size) |
|
else: |
|
vs_path, loaded_files = qa.one_knowledge_add(vs_path, files, one_conent, one_content_segmentation, |
|
sentence_size) |
|
if len(loaded_files): |
|
file_status = f"已添加 {'、'.join([os.path.split(i)[-1] for i in loaded_files if i])} 内容至知识库,并已加载知识库,请开始提问" |
|
else: |
|
file_status = "文件未成功加载,请重新上传文件" |
|
else: |
|
file_status = "模型未完成加载,请先在加载模型后再导入文件" |
|
vs_path = None |
|
logger.info(file_status) |
|
return vs_path, None, history + [[None, file_status]] |
|
|
|
|
|
knowledge_base_test_mode_info = ("【注意】\n\n" |
|
"1. 您已进入知识库测试模式,您输入的任何对话内容都将用于进行知识库查询," |
|
"并仅输出知识库匹配出的内容及相似度分值和及输入的文本源路径,查询的内容并不会进入模型查询。\n\n" |
|
"2. 知识相关度 Score 经测试,建议设置为 500 或更低,具体设置情况请结合实际使用调整。" |
|
"""3. 使用"添加单条数据"添加文本至知识库时,内容如未分段,则内容越多越会稀释各查询内容与之关联的score阈值。\n\n""" |
|
"4. 单条内容长度建议设置在100-150左右。") |
|
|
|
|
|
webui_title = """ |
|
# 🎉langchain-ChatGLM WebUI🎉 |
|
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM) |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ST_CONFIG: |
|
default_mode = "知识库问答" |
|
default_kb = "" |
|
|
|
|
|
|
|
class TempFile: |
|
''' |
|
为保持与get_vector_store的兼容性,需要将streamlit上传文件转化为其可以接受的方式 |
|
''' |
|
|
|
def __init__(self, path): |
|
self.name = path |
|
|
|
|
|
@st.cache_resource(show_spinner=False, max_entries=1) |
|
def load_model( |
|
llm_model: str = LLM_MODEL, |
|
embedding_model: str = EMBEDDING_MODEL, |
|
use_ptuning_v2: bool = USE_PTUNING_V2, |
|
): |
|
''' |
|
对应init_model,利用streamlit cache避免模型重复加载 |
|
''' |
|
local_doc_qa = LocalDocQA() |
|
|
|
args = parser.parse_args() |
|
args_dict = vars(args) |
|
args_dict.update(model=llm_model) |
|
if shared.loaderCheckPoint is None: |
|
shared.loaderCheckPoint = LoaderCheckPoint(args_dict) |
|
|
|
|
|
|
|
local_model_path = llm_model_dict.get(llm_model, {}).get('local_model_path') or '' |
|
no_remote_model = os.path.isdir(local_model_path) |
|
llm_model_ins = shared.loaderLLM(llm_model, no_remote_model, use_ptuning_v2) |
|
llm_model_ins.history_len = LLM_HISTORY_LEN |
|
|
|
try: |
|
local_doc_qa.init_cfg(llm_model=llm_model_ins, |
|
embedding_model=embedding_model) |
|
answer_result_stream_result = local_doc_qa.llm_model_chain( |
|
{"prompt": "你好", "history": [], "streaming": False}) |
|
|
|
for answer_result in answer_result_stream_result['answer_result_stream']: |
|
print(answer_result.llm_output) |
|
reply = """模型已成功加载,可以开始对话,或从右侧选择模式后开始对话""" |
|
logger.info(reply) |
|
except Exception as e: |
|
logger.error(e) |
|
reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮""" |
|
if str(e) == "Unknown platform: darwin": |
|
logger.info("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:" |
|
" https://github.com/imClumsyPanda/langchain-ChatGLM") |
|
else: |
|
logger.info(reply) |
|
return local_doc_qa |
|
|
|
|
|
|
|
def answer(query, vs_path='', history=[], mode='', score_threshold=0, |
|
vector_search_top_k=5, chunk_conent=True, chunk_size=100 |
|
): |
|
''' |
|
对应get_answer,--利用streamlit cache缓存相同问题的答案-- |
|
''' |
|
return get_answer(query, vs_path, history, mode, score_threshold, |
|
vector_search_top_k, chunk_conent, chunk_size) |
|
|
|
|
|
def use_kb_mode(m): |
|
return m in ["知识库问答", "知识库测试"] |
|
|
|
|
|
|
|
st.set_page_config(webui_title, layout='wide') |
|
|
|
chat_box = st_chatbox(greetings=["模型已成功加载,可以开始对话,或从左侧选择模式后开始对话。"]) |
|
|
|
|
|
|
|
modes = ['LLM 对话', '知识库问答', 'Bing搜索问答', '知识库测试'] |
|
with st.sidebar: |
|
def on_mode_change(): |
|
m = st.session_state.mode |
|
chat_box.robot_say(f'已切换到"{m}"模式') |
|
if m == '知识库测试': |
|
chat_box.robot_say(knowledge_base_test_mode_info) |
|
|
|
index = 0 |
|
try: |
|
index = modes.index(ST_CONFIG.default_mode) |
|
except: |
|
pass |
|
mode = st.selectbox('对话模式', modes, index, |
|
on_change=on_mode_change, key='mode') |
|
|
|
with st.expander('模型配置', not use_kb_mode(mode)): |
|
with st.form('model_config'): |
|
index = 0 |
|
try: |
|
index = llm_model_dict_list.index(LLM_MODEL) |
|
except: |
|
pass |
|
llm_model = st.selectbox('LLM模型', llm_model_dict_list, index) |
|
|
|
use_ptuning_v2 = st.checkbox('使用p-tuning-v2微调过的模型', False) |
|
|
|
try: |
|
index = embedding_model_dict_list.index(EMBEDDING_MODEL) |
|
except: |
|
pass |
|
embedding_model = st.selectbox( |
|
'Embedding模型', embedding_model_dict_list, index) |
|
|
|
btn_load_model = st.form_submit_button('重新加载模型') |
|
if btn_load_model: |
|
local_doc_qa = load_model(llm_model, embedding_model, use_ptuning_v2) |
|
|
|
history_len = st.slider( |
|
"LLM对话轮数", 1, 50, LLM_HISTORY_LEN) |
|
|
|
if use_kb_mode(mode): |
|
vs_list = get_vs_list() |
|
vs_list.remove('新建知识库') |
|
|
|
def on_new_kb(): |
|
name = st.session_state.kb_name |
|
if name in vs_list: |
|
st.error(f'名为“{name}”的知识库已存在。') |
|
else: |
|
vs_list.append(name) |
|
st.session_state.vs_path = name |
|
|
|
def on_vs_change(): |
|
chat_box.robot_say(f'已加载知识库: {st.session_state.vs_path}') |
|
with st.expander('知识库配置', True): |
|
cols = st.columns([12, 10]) |
|
kb_name = cols[0].text_input( |
|
'新知识库名称', placeholder='新知识库名称', label_visibility='collapsed') |
|
if 'kb_name' not in st.session_state: |
|
st.session_state.kb_name = kb_name |
|
cols[1].button('新建知识库', on_click=on_new_kb) |
|
index = 0 |
|
try: |
|
index = vs_list.index(ST_CONFIG.default_kb) |
|
except: |
|
pass |
|
vs_path = st.selectbox( |
|
'选择知识库', vs_list, index, on_change=on_vs_change, key='vs_path') |
|
|
|
st.text('') |
|
|
|
score_threshold = st.slider( |
|
'知识相关度阈值', 0, 1000, VECTOR_SEARCH_SCORE_THRESHOLD) |
|
top_k = st.slider('向量匹配数量', 1, 20, VECTOR_SEARCH_TOP_K) |
|
chunk_conent = st.checkbox('启用上下文关联', False) |
|
chunk_size = st.slider('上下文关联长度', 1, 1000, CHUNK_SIZE) |
|
st.text('') |
|
sentence_size = st.slider('文本入库分句长度限制', 1, 1000, SENTENCE_SIZE) |
|
files = st.file_uploader('上传知识文件', |
|
['docx', 'txt', 'md', 'csv', 'xlsx', 'pdf'], |
|
accept_multiple_files=True) |
|
if st.button('添加文件到知识库'): |
|
temp_dir = tempfile.mkdtemp() |
|
file_list = [] |
|
for f in files: |
|
file = os.path.join(temp_dir, f.name) |
|
with open(file, 'wb') as fp: |
|
fp.write(f.getvalue()) |
|
file_list.append(TempFile(file)) |
|
_, _, history = get_vector_store( |
|
vs_path, file_list, sentence_size, [], None, None) |
|
st.session_state.files = [] |
|
|
|
|
|
|
|
with st.spinner(f"正在加载模型({llm_model} + {embedding_model}),请耐心等候..."): |
|
local_doc_qa = load_model( |
|
llm_model, |
|
embedding_model, |
|
use_ptuning_v2, |
|
) |
|
local_doc_qa.llm_model_chain.history_len = history_len |
|
if use_kb_mode(mode): |
|
local_doc_qa.chunk_conent = chunk_conent |
|
local_doc_qa.chunk_size = chunk_size |
|
|
|
st.session_state.local_doc_qa = local_doc_qa |
|
|
|
|
|
with st.form("my_form", clear_on_submit=True): |
|
cols = st.columns([8, 1]) |
|
question = cols[0].text_area( |
|
'temp', key='input_question', label_visibility='collapsed') |
|
|
|
if cols[1].form_submit_button("发送"): |
|
chat_box.user_say(question) |
|
history = [] |
|
if mode == "LLM 对话": |
|
chat_box.robot_say("正在思考...") |
|
chat_box.output_messages() |
|
for history, _ in answer(question, |
|
history=[], |
|
mode=mode): |
|
chat_box.update_last_box_text(history[-1][-1]) |
|
elif use_kb_mode(mode): |
|
chat_box.robot_say(f"正在查询 [{vs_path}] ...") |
|
chat_box.output_messages() |
|
for history, _ in answer(question, |
|
vs_path=os.path.join( |
|
KB_ROOT_PATH, vs_path, 'vector_store'), |
|
history=[], |
|
mode=mode, |
|
score_threshold=score_threshold, |
|
vector_search_top_k=top_k, |
|
chunk_conent=chunk_conent, |
|
chunk_size=chunk_size): |
|
chat_box.update_last_box_text(history[-1][-1]) |
|
else: |
|
chat_box.robot_say(f"正在执行Bing搜索...") |
|
chat_box.output_messages() |
|
for history, _ in answer(question, |
|
history=[], |
|
mode=mode): |
|
chat_box.update_last_box_text(history[-1][-1]) |
|
|
|
|
|
chat_box.output_messages() |
|
|