Spaces:
Running
Running
import gradio as gr | |
import os | |
os.system('CMAKE_ARGS="-DLLAMA_OPENBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python') | |
import wget | |
from llama_cpp import Llama | |
import random | |
import os | |
import multiprocessing | |
from huggingface_hub import hf_hub_download #load from huggingfaces | |
def get_num_cores(): | |
"""Get the number of CPU cores.""" | |
return os.cpu_count() | |
def get_num_threads(): | |
"""Get the number of threads available to the current process.""" | |
return multiprocessing.cpu_count() | |
if __name__ == "__main__": | |
num_cores = get_num_cores() | |
num_threads = get_num_threads() | |
print(f"Number of CPU cores: {num_cores}") | |
print(f"Number of threads available to the current process: {num_threads}") | |
#url = 'https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q2_K.bin' | |
#filename = wget.download(url) | |
model_path= hf_hub_download(repo_id="brittlewis12/Octopus-v2-GGUF", filename="octopus-v2.Q4_K_S.gguf") | |
llm2 = Llama(model_path=model_path, use_mlock=False) | |
theme = gr.themes.Soft( | |
primary_hue=gr.themes.Color("#ededed", "#fee2e2", "#fecaca", "#fca5a5", "#f87171", "#ef4444", "#dc2626", "#b91c1c", "#991b1b", "#7f1d1d", "#6c1e1e"), | |
neutral_hue="red", | |
) | |
title = """<h1 align="center">Chat with awesome Octopus 2 model!</h1><br>""" | |
with gr.Blocks(theme=theme) as demo: | |
gr.HTML(title) | |
gr.HTML("This model is awesome for its size! It is only 20th the size of Chatgpt but is still decent for chatting. However like all models, LLAMA-2-CHAT can hallucinate and provide incorrect information.") | |
#chatbot = gr.Chatbot() | |
#msg = gr.Textbox() | |
#clear = gr.ClearButton([msg, chatbot]) | |
#instruction = gr.Textbox(label="Instruction", placeholder=) | |
def bot(user_message): | |
#token1 = llm.tokenize(b"### Instruction: ") | |
#token2 = llm.tokenize(instruction.encode()) | |
#token3 = llm2.tokenize(b"USER: ") | |
#tokens3 = llm2.tokenize(user_message.encode()) | |
#token4 = llm2.tokenize(b"\n\n### Response:") | |
tokens = llm2.tokenize(user_message.encode()) | |
count = 0 | |
output = "" | |
outputs = "" | |
for token in llm2.generate(tokens, top_k=50, top_p=0.73, temp=0.72, repeat_penalty=1.1): | |
text = llm2.detokenize([token]) | |
outputs += text.decode(errors='ignore') | |
count += 1 | |
if count >= 500 or (token == llm2.token_eos()): | |
break | |
output += text.decode(errors='ignore') | |
print(output, end="") | |
yield output | |
gr.HTML("Thanks for checking out this app!") | |
gr.Button("Answer").click( | |
fn=bot, | |
inputs=gr.Textbox(), | |
outputs=gr.Textbox(), | |
) | |
demo.queue() | |
demo.launch(debug=True) | |