Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import os | |
from huggingface_hub import login | |
import spaces | |
import gradio as gr | |
token = os.environ.get("HF_TOKEN_READ_LLAMA") | |
login(token) | |
model_name = 'meta-llama/Meta-Llama-3.1-8B-Instruct' | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype = torch.bfloat16) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
if torch.cuda.is_available(): | |
device = torch.device('cuda') | |
else: | |
device = torch.device('cpu') | |
model = model.to(device) | |
def response(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for value in history: | |
if value[0]: | |
messages.append({"role": "user", "content": value[0]}) | |
if value[1]: | |
messages.append({"role": "assistant", "content": value[1]}) | |
messages.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors='pt' | |
).to(model.device) | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
outputs = model.generate( | |
input_ids, | |
max_new_tokens=max_tokens, | |
eos_token_id=terminators, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p | |
) | |
response = '' | |
for message in tokenizer.decode( | |
outputs[0][input_ids.shape[-1]:], | |
skip_special_tokens=True | |
): | |
response += message | |
yield response | |
demo = gr.ChatInterface( | |
response, | |
additional_inputs = [ | |
gr.Textbox(value="You are a friendly assistant", label="System Message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1, value=0.9, step=0.05, label="Top_p"), | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() |