File size: 18,786 Bytes
96a9519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import time
from typing import List, Optional, Union, Any, Dict, Tuple, Literal
import sys, os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
sys.path.append(os.path.dirname(__file__))
import numpy as np
import PIL.Image
import torch
from diffusers import LCMScheduler, StableDiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import (
    retrieve_latents,
)

from streamdiffusion.image_filter import SimilarImageFilter


class StreamDiffusion:
    def __init__(
        self,
        pipe: StableDiffusionPipeline,
        t_index_list: List[int],
        torch_dtype: torch.dtype = torch.float16,
        width: int = 512,
        height: int = 512,
        do_add_noise: bool = True,
        use_denoising_batch: bool = True,
        frame_buffer_size: int = 1,
        cfg_type: Literal["none", "full", "self", "initialize"] = "self",
    ) -> None:
        self.device = pipe.device
        self.dtype = torch_dtype
        self.generator = None

        self.height = height
        self.width = width

        self.latent_height = int(height // pipe.vae_scale_factor)
        self.latent_width = int(width // pipe.vae_scale_factor)

        self.frame_bff_size = frame_buffer_size
        self.denoising_steps_num = len(t_index_list)

        self.cfg_type = cfg_type

        if use_denoising_batch:
            self.batch_size = self.denoising_steps_num * frame_buffer_size
            if self.cfg_type == "initialize":
                self.trt_unet_batch_size = (
                    self.denoising_steps_num + 1
                ) * self.frame_bff_size
            elif self.cfg_type == "full":
                self.trt_unet_batch_size = (
                    2 * self.denoising_steps_num * self.frame_bff_size
                )
            else:
                self.trt_unet_batch_size = self.denoising_steps_num * frame_buffer_size
        else:
            self.trt_unet_batch_size = self.frame_bff_size
            self.batch_size = frame_buffer_size

        self.t_list = t_index_list

        self.do_add_noise = do_add_noise
        self.use_denoising_batch = use_denoising_batch

        self.similar_image_filter = False
        self.similar_filter = SimilarImageFilter()
        self.prev_image_result = None

        self.pipe = pipe
        self.image_processor = VaeImageProcessor(pipe.vae_scale_factor)

        self.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
        self.text_encoder = pipe.text_encoder
        self.unet = pipe.unet
        self.vae = pipe.vae

        self.inference_time_ema = 0

    def load_lcm_lora(
        self,
        pretrained_model_name_or_path_or_dict: Union[
            str, Dict[str, torch.Tensor]
        ] = "latent-consistency/lcm-lora-sdv1-5",
        adapter_name: Optional[Any] = None,
        **kwargs,
    ) -> None:
        self.pipe.load_lora_weights(
            pretrained_model_name_or_path_or_dict, adapter_name, **kwargs
        )

    def load_lora(
        self,
        pretrained_lora_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[Any] = None,
        **kwargs,
    ) -> None:
        self.pipe.load_lora_weights(
            pretrained_lora_model_name_or_path_or_dict, adapter_name, **kwargs
        )

    def fuse_lora(
        self,
        fuse_unet: bool = True,
        fuse_text_encoder: bool = True,
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
    ) -> None:
        self.pipe.fuse_lora(
            fuse_unet=fuse_unet,
            fuse_text_encoder=fuse_text_encoder,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
        )

    def enable_similar_image_filter(self, threshold: float = 0.98, max_skip_frame: float = 10) -> None:
        self.similar_image_filter = True
        self.similar_filter.set_threshold(threshold)
        self.similar_filter.set_max_skip_frame(max_skip_frame)

    def disable_similar_image_filter(self) -> None:
        self.similar_image_filter = False

    @torch.no_grad()
    def prepare(
        self,
        prompt: str,
        negative_prompt: str = "",
        num_inference_steps: int = 50,
        guidance_scale: float = 1.2,
        delta: float = 1.0,
        generator: Optional[torch.Generator] = torch.Generator(),
        seed: int = 2,
    ) -> None:
        self.generator = generator
        self.generator.manual_seed(seed)
        # initialize x_t_latent (it can be any random tensor)
        if self.denoising_steps_num > 1:
            self.x_t_latent_buffer = torch.zeros(
                (
                    (self.denoising_steps_num - 1) * self.frame_bff_size,
                    4,
                    self.latent_height,
                    self.latent_width,
                ),
                dtype=self.dtype,
                device=self.device,
            )
        else:
            self.x_t_latent_buffer = None

        if self.cfg_type == "none":
            self.guidance_scale = 1.0
        else:
            self.guidance_scale = guidance_scale
        self.delta = delta

        do_classifier_free_guidance = False
        if self.guidance_scale > 1.0:
            do_classifier_free_guidance = True

        encoder_output = self.pipe.encode_prompt(
            prompt=prompt,
            device=self.device,
            num_images_per_prompt=1,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
        )
        self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)

        if self.use_denoising_batch and self.cfg_type == "full":
            uncond_prompt_embeds = encoder_output[1].repeat(self.batch_size, 1, 1)
        elif self.cfg_type == "initialize":
            uncond_prompt_embeds = encoder_output[1].repeat(self.frame_bff_size, 1, 1)

        if self.guidance_scale > 1.0 and (
            self.cfg_type == "initialize" or self.cfg_type == "full"
        ):
            self.prompt_embeds = torch.cat(
                [uncond_prompt_embeds, self.prompt_embeds], dim=0
            )

        self.scheduler.set_timesteps(num_inference_steps, self.device)
        self.timesteps = self.scheduler.timesteps.to(self.device)

        # make sub timesteps list based on the indices in the t_list list and the values in the timesteps list
        self.sub_timesteps = []
        for t in self.t_list:
            self.sub_timesteps.append(self.timesteps[t])

        sub_timesteps_tensor = torch.tensor(
            self.sub_timesteps, dtype=torch.long, device=self.device
        )
        self.sub_timesteps_tensor = torch.repeat_interleave(
            sub_timesteps_tensor,
            repeats=self.frame_bff_size if self.use_denoising_batch else 1,
            dim=0,
        )

        self.init_noise = torch.randn(
            (self.batch_size, 4, self.latent_height, self.latent_width),
            generator=generator,
        ).to(device=self.device, dtype=self.dtype)

        self.stock_noise = torch.zeros_like(self.init_noise)

        c_skip_list = []
        c_out_list = []
        for timestep in self.sub_timesteps:
            c_skip, c_out = self.scheduler.get_scalings_for_boundary_condition_discrete(
                timestep
            )
            c_skip_list.append(c_skip)
            c_out_list.append(c_out)

        self.c_skip = (
            torch.stack(c_skip_list)
            .view(len(self.t_list), 1, 1, 1)
            .to(dtype=self.dtype, device=self.device)
        )
        self.c_out = (
            torch.stack(c_out_list)
            .view(len(self.t_list), 1, 1, 1)
            .to(dtype=self.dtype, device=self.device)
        )

        alpha_prod_t_sqrt_list = []
        beta_prod_t_sqrt_list = []
        for timestep in self.sub_timesteps:
            alpha_prod_t_sqrt = self.scheduler.alphas_cumprod[timestep].sqrt()
            beta_prod_t_sqrt = (1 - self.scheduler.alphas_cumprod[timestep]).sqrt()
            alpha_prod_t_sqrt_list.append(alpha_prod_t_sqrt)
            beta_prod_t_sqrt_list.append(beta_prod_t_sqrt)
        alpha_prod_t_sqrt = (
            torch.stack(alpha_prod_t_sqrt_list)
            .view(len(self.t_list), 1, 1, 1)
            .to(dtype=self.dtype, device=self.device)
        )
        beta_prod_t_sqrt = (
            torch.stack(beta_prod_t_sqrt_list)
            .view(len(self.t_list), 1, 1, 1)
            .to(dtype=self.dtype, device=self.device)
        )
        self.alpha_prod_t_sqrt = torch.repeat_interleave(
            alpha_prod_t_sqrt,
            repeats=self.frame_bff_size if self.use_denoising_batch else 1,
            dim=0,
        )
        self.beta_prod_t_sqrt = torch.repeat_interleave(
            beta_prod_t_sqrt,
            repeats=self.frame_bff_size if self.use_denoising_batch else 1,
            dim=0,
        )

    @torch.no_grad()
    def update_prompt(self, prompt: str) -> None:
        encoder_output = self.pipe.encode_prompt(
            prompt=prompt,
            device=self.device,
            num_images_per_prompt=1,
            do_classifier_free_guidance=False,
        )
        self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)

    def add_noise(
        self,
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        t_index: int,
    ) -> torch.Tensor:
        noisy_samples = (
            self.alpha_prod_t_sqrt[t_index] * original_samples
            + self.beta_prod_t_sqrt[t_index] * noise
        )
        return noisy_samples

    def scheduler_step_batch(
        self,
        model_pred_batch: torch.Tensor,
        x_t_latent_batch: torch.Tensor,
        idx: Optional[int] = None,
    ) -> torch.Tensor:
        # TODO: use t_list to select beta_prod_t_sqrt
        if idx is None:
            F_theta = (
                x_t_latent_batch - self.beta_prod_t_sqrt * model_pred_batch
            ) / self.alpha_prod_t_sqrt
            denoised_batch = self.c_out * F_theta + self.c_skip * x_t_latent_batch
        else:
            F_theta = (
                x_t_latent_batch - self.beta_prod_t_sqrt[idx] * model_pred_batch
            ) / self.alpha_prod_t_sqrt[idx]
            denoised_batch = (
                self.c_out[idx] * F_theta + self.c_skip[idx] * x_t_latent_batch
            )

        return denoised_batch

    def unet_step(
        self,
        x_t_latent: torch.Tensor,
        t_list: Union[torch.Tensor, list[int]],
        idx: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
            x_t_latent_plus_uc = torch.concat([x_t_latent[0:1], x_t_latent], dim=0)
            t_list = torch.concat([t_list[0:1], t_list], dim=0)
        elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
            x_t_latent_plus_uc = torch.concat([x_t_latent, x_t_latent], dim=0)
            t_list = torch.concat([t_list, t_list], dim=0)
        else:
            x_t_latent_plus_uc = x_t_latent

        model_pred = self.unet(
            x_t_latent_plus_uc,
            t_list,
            encoder_hidden_states=self.prompt_embeds,
            return_dict=False,
        )[0]

        if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
            noise_pred_text = model_pred[1:]
            self.stock_noise = torch.concat(
                [model_pred[0:1], self.stock_noise[1:]], dim=0
            )  # ここコメントアウトでself out cfg
        elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
            noise_pred_uncond, noise_pred_text = model_pred.chunk(2)
        else:
            noise_pred_text = model_pred
        if self.guidance_scale > 1.0 and (
            self.cfg_type == "self" or self.cfg_type == "initialize"
        ):
            noise_pred_uncond = self.stock_noise * self.delta
        if self.guidance_scale > 1.0 and self.cfg_type != "none":
            model_pred = noise_pred_uncond + self.guidance_scale * (
                noise_pred_text - noise_pred_uncond
            )
        else:
            model_pred = noise_pred_text

        # compute the previous noisy sample x_t -> x_t-1
        if self.use_denoising_batch:
            denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
            if self.cfg_type == "self" or self.cfg_type == "initialize":
                scaled_noise = self.beta_prod_t_sqrt * self.stock_noise
                delta_x = self.scheduler_step_batch(model_pred, scaled_noise, idx)
                alpha_next = torch.concat(
                    [
                        self.alpha_prod_t_sqrt[1:],
                        torch.ones_like(self.alpha_prod_t_sqrt[0:1]),
                    ],
                    dim=0,
                )
                delta_x = alpha_next * delta_x
                beta_next = torch.concat(
                    [
                        self.beta_prod_t_sqrt[1:],
                        torch.ones_like(self.beta_prod_t_sqrt[0:1]),
                    ],
                    dim=0,
                )
                delta_x = delta_x / beta_next
                init_noise = torch.concat(
                    [self.init_noise[1:], self.init_noise[0:1]], dim=0
                )
                self.stock_noise = init_noise + delta_x

        else:
            # denoised_batch = self.scheduler.step(model_pred, t_list[0], x_t_latent).denoised
            denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)

        return denoised_batch, model_pred

    def encode_image(self, image_tensors: torch.Tensor) -> torch.Tensor:
        image_tensors = image_tensors.to(
            device=self.device,
            dtype=self.vae.dtype,
        )
        img_latent = retrieve_latents(self.vae.encode(image_tensors), self.generator)
        img_latent = img_latent * self.vae.config.scaling_factor
        x_t_latent = self.add_noise(img_latent, self.init_noise[0], 0)
        return x_t_latent

    def decode_image(self, x_0_pred_out: torch.Tensor) -> torch.Tensor:
        output_latent = self.vae.decode(
            x_0_pred_out / self.vae.config.scaling_factor, return_dict=False
        )[0]
        return output_latent

    def predict_x0_batch(self, x_t_latent: torch.Tensor) -> torch.Tensor:
        prev_latent_batch = self.x_t_latent_buffer

        if self.use_denoising_batch:
            t_list = self.sub_timesteps_tensor
            if self.denoising_steps_num > 1:
                x_t_latent = torch.cat((x_t_latent, prev_latent_batch), dim=0)
                self.stock_noise = torch.cat(
                    (self.init_noise[0:1], self.stock_noise[:-1]), dim=0
                )
            x_0_pred_batch, model_pred = self.unet_step(x_t_latent, t_list)

            if self.denoising_steps_num > 1:
                x_0_pred_out = x_0_pred_batch[-1].unsqueeze(0)
                if self.do_add_noise:
                    self.x_t_latent_buffer = (
                        self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
                        + self.beta_prod_t_sqrt[1:] * self.init_noise[1:]
                    )
                else:
                    self.x_t_latent_buffer = (
                        self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
                    )
            else:
                x_0_pred_out = x_0_pred_batch
                self.x_t_latent_buffer = None
        else:
            self.init_noise = x_t_latent
            for idx, t in enumerate(self.sub_timesteps_tensor):
                t = t.view(
                    1,
                ).repeat(
                    self.frame_bff_size,
                )
                x_0_pred, model_pred = self.unet_step(x_t_latent, t, idx)
                if idx < len(self.sub_timesteps_tensor) - 1:
                    if self.do_add_noise:
                        x_t_latent = self.alpha_prod_t_sqrt[
                            idx + 1
                        ] * x_0_pred + self.beta_prod_t_sqrt[
                            idx + 1
                        ] * torch.randn_like(
                            x_0_pred, device=self.device, dtype=self.dtype
                        )
                    else:
                        x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred
            x_0_pred_out = x_0_pred

        return x_0_pred_out

    @torch.no_grad()
    def __call__(
        self, x: Union[torch.Tensor, PIL.Image.Image, np.ndarray] = None
    ) -> torch.Tensor:
        # start = torch.cuda.Event(enable_timing=True)
        # end = torch.cuda.Event(enable_timing=True)
        # start.record()
        if x is not None:
            x = self.image_processor.preprocess(x, self.height, self.width).to(
                device=self.device, dtype=self.dtype
            )
            if self.similar_image_filter:
                x = self.similar_filter(x)
                if x is None:
                    time.sleep(self.inference_time_ema)
                    return self.prev_image_result
            x_t_latent = self.encode_image(x)
        else:
            # TODO: check the dimension of x_t_latent
            x_t_latent = torch.randn((1, 4, self.latent_height, self.latent_width)).to(
                device=self.device, dtype=self.dtype
            )
        x_0_pred_out = self.predict_x0_batch(x_t_latent)
        x_output = self.decode_image(x_0_pred_out).detach().clone()

        self.prev_image_result = x_output
        # end.record()
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        # inference_time = start.elapsed_time(end) / 1000
        # self.inference_time_ema = 0.9 * self.inference_time_ema + 0.1 * inference_time
        return x_output

    @torch.no_grad()
    def txt2img(self, batch_size: int = 1) -> torch.Tensor:
        x_0_pred_out = self.predict_x0_batch(
            torch.randn((batch_size, 4, self.latent_height, self.latent_width)).to(
                device=self.device, dtype=self.dtype
            )
        )
        x_output = self.decode_image(x_0_pred_out).detach().clone()
        return x_output

    def txt2img_sd_turbo(self, batch_size: int = 1) -> torch.Tensor:
        x_t_latent = torch.randn(
            (batch_size, 4, self.latent_height, self.latent_width),
            device=self.device,
            dtype=self.dtype,
        )
        model_pred = self.unet(
            x_t_latent,
            self.sub_timesteps_tensor,
            encoder_hidden_states=self.prompt_embeds,
            return_dict=False,
        )[0]
        x_0_pred_out = (
            x_t_latent - self.beta_prod_t_sqrt * model_pred
        ) / self.alpha_prod_t_sqrt
        return self.decode_image(x_0_pred_out)