Spaces:
Sleeping
Sleeping
File size: 18,786 Bytes
96a9519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import time
from typing import List, Optional, Union, Any, Dict, Tuple, Literal
import sys, os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
sys.path.append(os.path.dirname(__file__))
import numpy as np
import PIL.Image
import torch
from diffusers import LCMScheduler, StableDiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import (
retrieve_latents,
)
from streamdiffusion.image_filter import SimilarImageFilter
class StreamDiffusion:
def __init__(
self,
pipe: StableDiffusionPipeline,
t_index_list: List[int],
torch_dtype: torch.dtype = torch.float16,
width: int = 512,
height: int = 512,
do_add_noise: bool = True,
use_denoising_batch: bool = True,
frame_buffer_size: int = 1,
cfg_type: Literal["none", "full", "self", "initialize"] = "self",
) -> None:
self.device = pipe.device
self.dtype = torch_dtype
self.generator = None
self.height = height
self.width = width
self.latent_height = int(height // pipe.vae_scale_factor)
self.latent_width = int(width // pipe.vae_scale_factor)
self.frame_bff_size = frame_buffer_size
self.denoising_steps_num = len(t_index_list)
self.cfg_type = cfg_type
if use_denoising_batch:
self.batch_size = self.denoising_steps_num * frame_buffer_size
if self.cfg_type == "initialize":
self.trt_unet_batch_size = (
self.denoising_steps_num + 1
) * self.frame_bff_size
elif self.cfg_type == "full":
self.trt_unet_batch_size = (
2 * self.denoising_steps_num * self.frame_bff_size
)
else:
self.trt_unet_batch_size = self.denoising_steps_num * frame_buffer_size
else:
self.trt_unet_batch_size = self.frame_bff_size
self.batch_size = frame_buffer_size
self.t_list = t_index_list
self.do_add_noise = do_add_noise
self.use_denoising_batch = use_denoising_batch
self.similar_image_filter = False
self.similar_filter = SimilarImageFilter()
self.prev_image_result = None
self.pipe = pipe
self.image_processor = VaeImageProcessor(pipe.vae_scale_factor)
self.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.vae = pipe.vae
self.inference_time_ema = 0
def load_lcm_lora(
self,
pretrained_model_name_or_path_or_dict: Union[
str, Dict[str, torch.Tensor]
] = "latent-consistency/lcm-lora-sdv1-5",
adapter_name: Optional[Any] = None,
**kwargs,
) -> None:
self.pipe.load_lora_weights(
pretrained_model_name_or_path_or_dict, adapter_name, **kwargs
)
def load_lora(
self,
pretrained_lora_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
adapter_name: Optional[Any] = None,
**kwargs,
) -> None:
self.pipe.load_lora_weights(
pretrained_lora_model_name_or_path_or_dict, adapter_name, **kwargs
)
def fuse_lora(
self,
fuse_unet: bool = True,
fuse_text_encoder: bool = True,
lora_scale: float = 1.0,
safe_fusing: bool = False,
) -> None:
self.pipe.fuse_lora(
fuse_unet=fuse_unet,
fuse_text_encoder=fuse_text_encoder,
lora_scale=lora_scale,
safe_fusing=safe_fusing,
)
def enable_similar_image_filter(self, threshold: float = 0.98, max_skip_frame: float = 10) -> None:
self.similar_image_filter = True
self.similar_filter.set_threshold(threshold)
self.similar_filter.set_max_skip_frame(max_skip_frame)
def disable_similar_image_filter(self) -> None:
self.similar_image_filter = False
@torch.no_grad()
def prepare(
self,
prompt: str,
negative_prompt: str = "",
num_inference_steps: int = 50,
guidance_scale: float = 1.2,
delta: float = 1.0,
generator: Optional[torch.Generator] = torch.Generator(),
seed: int = 2,
) -> None:
self.generator = generator
self.generator.manual_seed(seed)
# initialize x_t_latent (it can be any random tensor)
if self.denoising_steps_num > 1:
self.x_t_latent_buffer = torch.zeros(
(
(self.denoising_steps_num - 1) * self.frame_bff_size,
4,
self.latent_height,
self.latent_width,
),
dtype=self.dtype,
device=self.device,
)
else:
self.x_t_latent_buffer = None
if self.cfg_type == "none":
self.guidance_scale = 1.0
else:
self.guidance_scale = guidance_scale
self.delta = delta
do_classifier_free_guidance = False
if self.guidance_scale > 1.0:
do_classifier_free_guidance = True
encoder_output = self.pipe.encode_prompt(
prompt=prompt,
device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
)
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)
if self.use_denoising_batch and self.cfg_type == "full":
uncond_prompt_embeds = encoder_output[1].repeat(self.batch_size, 1, 1)
elif self.cfg_type == "initialize":
uncond_prompt_embeds = encoder_output[1].repeat(self.frame_bff_size, 1, 1)
if self.guidance_scale > 1.0 and (
self.cfg_type == "initialize" or self.cfg_type == "full"
):
self.prompt_embeds = torch.cat(
[uncond_prompt_embeds, self.prompt_embeds], dim=0
)
self.scheduler.set_timesteps(num_inference_steps, self.device)
self.timesteps = self.scheduler.timesteps.to(self.device)
# make sub timesteps list based on the indices in the t_list list and the values in the timesteps list
self.sub_timesteps = []
for t in self.t_list:
self.sub_timesteps.append(self.timesteps[t])
sub_timesteps_tensor = torch.tensor(
self.sub_timesteps, dtype=torch.long, device=self.device
)
self.sub_timesteps_tensor = torch.repeat_interleave(
sub_timesteps_tensor,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
self.init_noise = torch.randn(
(self.batch_size, 4, self.latent_height, self.latent_width),
generator=generator,
).to(device=self.device, dtype=self.dtype)
self.stock_noise = torch.zeros_like(self.init_noise)
c_skip_list = []
c_out_list = []
for timestep in self.sub_timesteps:
c_skip, c_out = self.scheduler.get_scalings_for_boundary_condition_discrete(
timestep
)
c_skip_list.append(c_skip)
c_out_list.append(c_out)
self.c_skip = (
torch.stack(c_skip_list)
.view(len(self.t_list), 1, 1, 1)
.to(dtype=self.dtype, device=self.device)
)
self.c_out = (
torch.stack(c_out_list)
.view(len(self.t_list), 1, 1, 1)
.to(dtype=self.dtype, device=self.device)
)
alpha_prod_t_sqrt_list = []
beta_prod_t_sqrt_list = []
for timestep in self.sub_timesteps:
alpha_prod_t_sqrt = self.scheduler.alphas_cumprod[timestep].sqrt()
beta_prod_t_sqrt = (1 - self.scheduler.alphas_cumprod[timestep]).sqrt()
alpha_prod_t_sqrt_list.append(alpha_prod_t_sqrt)
beta_prod_t_sqrt_list.append(beta_prod_t_sqrt)
alpha_prod_t_sqrt = (
torch.stack(alpha_prod_t_sqrt_list)
.view(len(self.t_list), 1, 1, 1)
.to(dtype=self.dtype, device=self.device)
)
beta_prod_t_sqrt = (
torch.stack(beta_prod_t_sqrt_list)
.view(len(self.t_list), 1, 1, 1)
.to(dtype=self.dtype, device=self.device)
)
self.alpha_prod_t_sqrt = torch.repeat_interleave(
alpha_prod_t_sqrt,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
self.beta_prod_t_sqrt = torch.repeat_interleave(
beta_prod_t_sqrt,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
@torch.no_grad()
def update_prompt(self, prompt: str) -> None:
encoder_output = self.pipe.encode_prompt(
prompt=prompt,
device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
)
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
t_index: int,
) -> torch.Tensor:
noisy_samples = (
self.alpha_prod_t_sqrt[t_index] * original_samples
+ self.beta_prod_t_sqrt[t_index] * noise
)
return noisy_samples
def scheduler_step_batch(
self,
model_pred_batch: torch.Tensor,
x_t_latent_batch: torch.Tensor,
idx: Optional[int] = None,
) -> torch.Tensor:
# TODO: use t_list to select beta_prod_t_sqrt
if idx is None:
F_theta = (
x_t_latent_batch - self.beta_prod_t_sqrt * model_pred_batch
) / self.alpha_prod_t_sqrt
denoised_batch = self.c_out * F_theta + self.c_skip * x_t_latent_batch
else:
F_theta = (
x_t_latent_batch - self.beta_prod_t_sqrt[idx] * model_pred_batch
) / self.alpha_prod_t_sqrt[idx]
denoised_batch = (
self.c_out[idx] * F_theta + self.c_skip[idx] * x_t_latent_batch
)
return denoised_batch
def unet_step(
self,
x_t_latent: torch.Tensor,
t_list: Union[torch.Tensor, list[int]],
idx: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
x_t_latent_plus_uc = torch.concat([x_t_latent[0:1], x_t_latent], dim=0)
t_list = torch.concat([t_list[0:1], t_list], dim=0)
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
x_t_latent_plus_uc = torch.concat([x_t_latent, x_t_latent], dim=0)
t_list = torch.concat([t_list, t_list], dim=0)
else:
x_t_latent_plus_uc = x_t_latent
model_pred = self.unet(
x_t_latent_plus_uc,
t_list,
encoder_hidden_states=self.prompt_embeds,
return_dict=False,
)[0]
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
noise_pred_text = model_pred[1:]
self.stock_noise = torch.concat(
[model_pred[0:1], self.stock_noise[1:]], dim=0
) # ここコメントアウトでself out cfg
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
noise_pred_uncond, noise_pred_text = model_pred.chunk(2)
else:
noise_pred_text = model_pred
if self.guidance_scale > 1.0 and (
self.cfg_type == "self" or self.cfg_type == "initialize"
):
noise_pred_uncond = self.stock_noise * self.delta
if self.guidance_scale > 1.0 and self.cfg_type != "none":
model_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
else:
model_pred = noise_pred_text
# compute the previous noisy sample x_t -> x_t-1
if self.use_denoising_batch:
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
if self.cfg_type == "self" or self.cfg_type == "initialize":
scaled_noise = self.beta_prod_t_sqrt * self.stock_noise
delta_x = self.scheduler_step_batch(model_pred, scaled_noise, idx)
alpha_next = torch.concat(
[
self.alpha_prod_t_sqrt[1:],
torch.ones_like(self.alpha_prod_t_sqrt[0:1]),
],
dim=0,
)
delta_x = alpha_next * delta_x
beta_next = torch.concat(
[
self.beta_prod_t_sqrt[1:],
torch.ones_like(self.beta_prod_t_sqrt[0:1]),
],
dim=0,
)
delta_x = delta_x / beta_next
init_noise = torch.concat(
[self.init_noise[1:], self.init_noise[0:1]], dim=0
)
self.stock_noise = init_noise + delta_x
else:
# denoised_batch = self.scheduler.step(model_pred, t_list[0], x_t_latent).denoised
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
return denoised_batch, model_pred
def encode_image(self, image_tensors: torch.Tensor) -> torch.Tensor:
image_tensors = image_tensors.to(
device=self.device,
dtype=self.vae.dtype,
)
img_latent = retrieve_latents(self.vae.encode(image_tensors), self.generator)
img_latent = img_latent * self.vae.config.scaling_factor
x_t_latent = self.add_noise(img_latent, self.init_noise[0], 0)
return x_t_latent
def decode_image(self, x_0_pred_out: torch.Tensor) -> torch.Tensor:
output_latent = self.vae.decode(
x_0_pred_out / self.vae.config.scaling_factor, return_dict=False
)[0]
return output_latent
def predict_x0_batch(self, x_t_latent: torch.Tensor) -> torch.Tensor:
prev_latent_batch = self.x_t_latent_buffer
if self.use_denoising_batch:
t_list = self.sub_timesteps_tensor
if self.denoising_steps_num > 1:
x_t_latent = torch.cat((x_t_latent, prev_latent_batch), dim=0)
self.stock_noise = torch.cat(
(self.init_noise[0:1], self.stock_noise[:-1]), dim=0
)
x_0_pred_batch, model_pred = self.unet_step(x_t_latent, t_list)
if self.denoising_steps_num > 1:
x_0_pred_out = x_0_pred_batch[-1].unsqueeze(0)
if self.do_add_noise:
self.x_t_latent_buffer = (
self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
+ self.beta_prod_t_sqrt[1:] * self.init_noise[1:]
)
else:
self.x_t_latent_buffer = (
self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
)
else:
x_0_pred_out = x_0_pred_batch
self.x_t_latent_buffer = None
else:
self.init_noise = x_t_latent
for idx, t in enumerate(self.sub_timesteps_tensor):
t = t.view(
1,
).repeat(
self.frame_bff_size,
)
x_0_pred, model_pred = self.unet_step(x_t_latent, t, idx)
if idx < len(self.sub_timesteps_tensor) - 1:
if self.do_add_noise:
x_t_latent = self.alpha_prod_t_sqrt[
idx + 1
] * x_0_pred + self.beta_prod_t_sqrt[
idx + 1
] * torch.randn_like(
x_0_pred, device=self.device, dtype=self.dtype
)
else:
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred
x_0_pred_out = x_0_pred
return x_0_pred_out
@torch.no_grad()
def __call__(
self, x: Union[torch.Tensor, PIL.Image.Image, np.ndarray] = None
) -> torch.Tensor:
# start = torch.cuda.Event(enable_timing=True)
# end = torch.cuda.Event(enable_timing=True)
# start.record()
if x is not None:
x = self.image_processor.preprocess(x, self.height, self.width).to(
device=self.device, dtype=self.dtype
)
if self.similar_image_filter:
x = self.similar_filter(x)
if x is None:
time.sleep(self.inference_time_ema)
return self.prev_image_result
x_t_latent = self.encode_image(x)
else:
# TODO: check the dimension of x_t_latent
x_t_latent = torch.randn((1, 4, self.latent_height, self.latent_width)).to(
device=self.device, dtype=self.dtype
)
x_0_pred_out = self.predict_x0_batch(x_t_latent)
x_output = self.decode_image(x_0_pred_out).detach().clone()
self.prev_image_result = x_output
# end.record()
if torch.cuda.is_available():
torch.cuda.synchronize()
# inference_time = start.elapsed_time(end) / 1000
# self.inference_time_ema = 0.9 * self.inference_time_ema + 0.1 * inference_time
return x_output
@torch.no_grad()
def txt2img(self, batch_size: int = 1) -> torch.Tensor:
x_0_pred_out = self.predict_x0_batch(
torch.randn((batch_size, 4, self.latent_height, self.latent_width)).to(
device=self.device, dtype=self.dtype
)
)
x_output = self.decode_image(x_0_pred_out).detach().clone()
return x_output
def txt2img_sd_turbo(self, batch_size: int = 1) -> torch.Tensor:
x_t_latent = torch.randn(
(batch_size, 4, self.latent_height, self.latent_width),
device=self.device,
dtype=self.dtype,
)
model_pred = self.unet(
x_t_latent,
self.sub_timesteps_tensor,
encoder_hidden_states=self.prompt_embeds,
return_dict=False,
)[0]
x_0_pred_out = (
x_t_latent - self.beta_prod_t_sqrt * model_pred
) / self.alpha_prod_t_sqrt
return self.decode_image(x_0_pred_out)
|