Spaces:
Running
on
A10G
Running
on
A10G
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torchvision | |
def denormalize(images: Union[torch.Tensor, np.ndarray]) -> torch.Tensor: | |
""" | |
Denormalize an image array to [0,1]. | |
""" | |
return (images / 2 + 0.5).clamp(0, 1) | |
def pt_to_numpy(images: torch.Tensor) -> np.ndarray: | |
""" | |
Convert a PyTorch tensor to a NumPy image. | |
""" | |
images = images.cpu().permute(0, 2, 3, 1).float().numpy() | |
return images | |
def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image: | |
""" | |
Convert a NumPy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
if images.shape[-1] == 1: | |
# special case for grayscale (single channel) images | |
pil_images = [ | |
PIL.Image.fromarray(image.squeeze(), mode="L") for image in images | |
] | |
else: | |
pil_images = [PIL.Image.fromarray(image) for image in images] | |
return pil_images | |
def postprocess_image( | |
image: torch.Tensor, | |
output_type: str = "pil", | |
do_denormalize: Optional[List[bool]] = None, | |
) -> Union[torch.Tensor, np.ndarray, PIL.Image.Image]: | |
if not isinstance(image, torch.Tensor): | |
raise ValueError( | |
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" | |
) | |
if output_type == "latent": | |
return image | |
do_normalize_flg = True | |
if do_denormalize is None: | |
do_denormalize = [do_normalize_flg] * image.shape[0] | |
image = torch.stack( | |
[ | |
denormalize(image[i]) if do_denormalize[i] else image[i] | |
for i in range(image.shape[0]) | |
] | |
) | |
if output_type == "pt": | |
return image | |
image = pt_to_numpy(image) | |
if output_type == "np": | |
return image | |
if output_type == "pil": | |
return numpy_to_pil(image) | |
def process_image( | |
image_pil: PIL.Image.Image, range: Tuple[int, int] = (-1, 1) | |
) -> Tuple[torch.Tensor, PIL.Image.Image]: | |
image = torchvision.transforms.ToTensor()(image_pil) | |
r_min, r_max = range[0], range[1] | |
image = image * (r_max - r_min) + r_min | |
return image[None, ...], image_pil | |
def pil2tensor(image_pil: PIL.Image.Image) -> torch.Tensor: | |
height = image_pil.height | |
width = image_pil.width | |
imgs = [] | |
img, _ = process_image(image_pil) | |
imgs.append(img) | |
imgs = torch.vstack(imgs) | |
images = torch.nn.functional.interpolate( | |
imgs, size=(height, width), mode="bilinear" | |
) | |
image_tensors = images.to(torch.float16) | |
return image_tensors | |