Spaces:
Runtime error
Runtime error
File size: 10,313 Bytes
de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 487ee6d de4d7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os
import os.path as osp
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import trimesh
from PIL import Image
from lib.common.render import Render
from lib.dataset.mesh_util import SMPLX, HoppeMesh, projection, rescale_smpl
cape_gender = {
"male":
['00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284', '03375',
'03394'], "female": ['00134', '00159', '03223', '03331', '03383']
}
class EvalDataset:
def __init__(self, cfg, device):
self.root = cfg.root
self.bsize = cfg.batch_size
self.opt = cfg.dataset
self.datasets = self.opt.types
self.input_size = self.opt.input_size
self.scales = self.opt.scales
self.vol_res = cfg.vol_res
# [(feat_name, channel_num),...]
self.in_geo = [item[0] for item in cfg.net.in_geo]
self.in_nml = [item[0] for item in cfg.net.in_nml]
self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
self.in_total = self.in_geo + self.in_nml
self.in_total_dim = self.in_geo_dim + self.in_nml_dim
self.rotations = range(0, 360, 120)
self.datasets_dict = {}
for dataset_id, dataset in enumerate(self.datasets):
dataset_dir = osp.join(self.root, dataset)
mesh_dir = osp.join(dataset_dir, "scans")
smplx_dir = osp.join(dataset_dir, "smplx")
smpl_dir = osp.join(dataset_dir, "smpl")
self.datasets_dict[dataset] = {
"smplx_dir": smplx_dir,
"smpl_dir": smpl_dir,
"mesh_dir": mesh_dir,
"scale": self.scales[dataset_id],
}
self.datasets_dict[dataset].update({
"subjects":
np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str)
})
self.subject_list = self.get_subject_list()
self.smplx = SMPLX()
# PIL to tensor
self.image_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
# PIL to tensor
self.mask_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.0, ), (1.0, )),
])
self.device = device
self.render = Render(size=512, device=self.device)
def render_normal(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_image()
def get_subject_list(self):
subject_list = []
for dataset in self.datasets:
split_txt = ""
if dataset == 'renderpeople':
split_txt = osp.join(self.root, dataset, "loose.txt")
elif dataset == 'cape':
split_txt = osp.join(self.root, dataset, "pose.txt")
if osp.exists(split_txt) and osp.getsize(split_txt) > 0:
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
return subject_list
def __len__(self):
return len(self.subject_list) * len(self.rotations)
def __getitem__(self, index):
rid = index % len(self.rotations)
mid = index // len(self.rotations)
rotation = self.rotations[rid]
subject = self.subject_list[mid].split("/")[1]
dataset = self.subject_list[mid].split("/")[0]
render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject])
if not osp.exists(osp.join(self.root, render_folder)):
render_folder = "/".join([dataset + "_36views", subject])
# setup paths
data_dict = {
"dataset": dataset,
"subject": subject,
"rotation": rotation,
"scale": self.datasets_dict[dataset]["scale"],
"calib_path": osp.join(self.root, render_folder, "calib", f"{rotation:03d}.txt"),
"image_path": osp.join(self.root, render_folder, "render", f"{rotation:03d}.png"),
}
if dataset == "cape":
data_dict.update({
"mesh_path":
osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"),
"smpl_path":
osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"),
})
else:
data_dict.update({
"mesh_path":
osp.join(
self.datasets_dict[dataset]["mesh_dir"],
f"{subject}.obj",
),
"smplx_path":
osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"),
})
# load training data
data_dict.update(self.load_calib(data_dict))
# image/normal/depth loader
for name, channel in zip(self.in_total, self.in_total_dim):
if f"{name}_path" not in data_dict.keys():
data_dict.update({
f"{name}_path":
osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
})
# tensor update
if os.path.exists(data_dict[f"{name}_path"]):
data_dict.update({
name:
self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False)
})
data_dict.update(self.load_mesh(data_dict))
data_dict.update(self.load_smpl(data_dict))
del data_dict["mesh"]
return data_dict
def imagepath2tensor(self, path, channel=3, inv=False):
rgba = Image.open(path).convert("RGBA")
# remove CAPE's noisy outliers using OpenCV's inpainting
if "cape" in path and "T_" not in path:
mask = cv2.imread(path.replace(path.split("/")[-2], "mask"), 0) > 1
img = np.asarray(rgba)[:, :, :3]
fill_mask = ((mask & (img.sum(axis=2) == 0))).astype(np.uint8)
image = Image.fromarray(
cv2.inpaint(img * mask[..., None], fill_mask, 3, cv2.INPAINT_TELEA)
)
mask = Image.fromarray(mask)
else:
mask = rgba.split()[-1]
image = rgba.convert("RGB")
image = self.image_to_tensor(image)
mask = self.mask_to_tensor(mask)
image = (image * mask)[:channel]
return (image * (0.5 - inv) * 2.0).float()
def load_calib(self, data_dict):
calib_data = np.loadtxt(data_dict["calib_path"], dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
calib_mat = np.matmul(intrinsic, extrinsic)
calib_mat = torch.from_numpy(calib_mat).float()
return {"calib": calib_mat}
def load_mesh(self, data_dict):
mesh_path = data_dict["mesh_path"]
scale = data_dict["scale"]
scan_mesh = trimesh.load(mesh_path)
verts = scan_mesh.vertices
faces = scan_mesh.faces
mesh = HoppeMesh(verts * scale, faces)
return {
"mesh": mesh,
"verts": torch.as_tensor(verts * scale).float(),
"faces": torch.as_tensor(faces).long(),
}
def load_smpl(self, data_dict):
smpl_type = ("smplx" if ("smplx_path" in data_dict.keys()) else "smpl")
smplx_verts = rescale_smpl(data_dict[f"{smpl_type}_path"], scale=100.0)
smplx_faces = torch.as_tensor(getattr(self.smplx, f"{smpl_type}_faces")).long()
smplx_verts = projection(smplx_verts, data_dict["calib"]).float()
return_dict = {
"smpl_verts": smplx_verts,
"smpl_faces": smplx_faces,
}
return return_dict
def depth_to_voxel(self, data_dict):
data_dict["depth_F"] = transforms.Resize(self.vol_res)(data_dict["depth_F"])
data_dict["depth_B"] = transforms.Resize(self.vol_res)(data_dict["depth_B"])
depth_mask = (~torch.isnan(data_dict['depth_F']))
depth_FB = torch.cat([data_dict['depth_F'], data_dict['depth_B']], dim=0)
depth_FB[:, ~depth_mask[0]] = 0.
# Important: index_long = depth_value - 1
index_z = (((depth_FB + 1.) * 0.5 * self.vol_res) - 1).clip(0, self.vol_res -
1).permute(1, 2, 0)
index_z_ceil = torch.ceil(index_z).long()
index_z_floor = torch.floor(index_z).long()
index_z_frac = torch.frac(index_z)
index_mask = index_z[..., 0] == torch.tensor(self.vol_res * 0.5 - 1).long()
voxels = F.one_hot(index_z_ceil[..., 0], self.vol_res) * index_z_frac[..., 0] + \
F.one_hot(index_z_floor[..., 0], self.vol_res) * (1.0-index_z_frac[..., 0]) + \
F.one_hot(index_z_ceil[..., 1], self.vol_res) * index_z_frac[..., 1]+ \
F.one_hot(index_z_floor[..., 1], self.vol_res) * (1.0 - index_z_frac[..., 1])
voxels[index_mask] *= 0
voxels = torch.flip(voxels, [2]).permute(2, 0, 1).float() #[x-2, y-0, z-1]
return {
"depth_voxels": voxels.flip([
0,
]).unsqueeze(0).to(self.device),
}
def render_depth(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_image(type="depth")
|