File size: 10,313 Bytes
de4d7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
de4d7c5
487ee6d
de4d7c5
487ee6d
de4d7c5
487ee6d
 
 
 
 
de4d7c5
 
 
487ee6d
 
de4d7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
 
 
de4d7c5
 
 
 
 
487ee6d
 
 
 
 
de4d7c5
 
487ee6d
 
 
 
 
de4d7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
 
 
 
 
de4d7c5
 
487ee6d
 
 
 
 
 
 
 
 
de4d7c5
 
 
 
 
 
 
 
487ee6d
 
 
 
de4d7c5
 
 
487ee6d
 
 
 
de4d7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import os
import os.path as osp

import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import trimesh
from PIL import Image

from lib.common.render import Render
from lib.dataset.mesh_util import SMPLX, HoppeMesh, projection, rescale_smpl

cape_gender = {
    "male":
    ['00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284', '03375',
     '03394'], "female": ['00134', '00159', '03223', '03331', '03383']
}


class EvalDataset:
    def __init__(self, cfg, device):

        self.root = cfg.root
        self.bsize = cfg.batch_size

        self.opt = cfg.dataset
        self.datasets = self.opt.types
        self.input_size = self.opt.input_size
        self.scales = self.opt.scales
        self.vol_res = cfg.vol_res

        # [(feat_name, channel_num),...]
        self.in_geo = [item[0] for item in cfg.net.in_geo]
        self.in_nml = [item[0] for item in cfg.net.in_nml]

        self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
        self.in_nml_dim = [item[1] for item in cfg.net.in_nml]

        self.in_total = self.in_geo + self.in_nml
        self.in_total_dim = self.in_geo_dim + self.in_nml_dim

        self.rotations = range(0, 360, 120)

        self.datasets_dict = {}

        for dataset_id, dataset in enumerate(self.datasets):

            dataset_dir = osp.join(self.root, dataset)

            mesh_dir = osp.join(dataset_dir, "scans")
            smplx_dir = osp.join(dataset_dir, "smplx")
            smpl_dir = osp.join(dataset_dir, "smpl")

            self.datasets_dict[dataset] = {
                "smplx_dir": smplx_dir,
                "smpl_dir": smpl_dir,
                "mesh_dir": mesh_dir,
                "scale": self.scales[dataset_id],
            }

            self.datasets_dict[dataset].update({
                "subjects":
                np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str)
            })

        self.subject_list = self.get_subject_list()
        self.smplx = SMPLX()

        # PIL to tensor
        self.image_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ])

        # PIL to tensor
        self.mask_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.0, ), (1.0, )),
        ])

        self.device = device
        self.render = Render(size=512, device=self.device)

    def render_normal(self, verts, faces):

        # render optimized mesh (normal, T_normal, image [-1,1])
        self.render.load_meshes(verts, faces)
        return self.render.get_image()

    def get_subject_list(self):

        subject_list = []

        for dataset in self.datasets:

            split_txt = ""

            if dataset == 'renderpeople':
                split_txt = osp.join(self.root, dataset, "loose.txt")
            elif dataset == 'cape':
                split_txt = osp.join(self.root, dataset, "pose.txt")

            if osp.exists(split_txt) and osp.getsize(split_txt) > 0:
                print(f"load from {split_txt}")
                subject_list += np.loadtxt(split_txt, dtype=str).tolist()

        return subject_list

    def __len__(self):
        return len(self.subject_list) * len(self.rotations)

    def __getitem__(self, index):

        rid = index % len(self.rotations)
        mid = index // len(self.rotations)

        rotation = self.rotations[rid]
        subject = self.subject_list[mid].split("/")[1]
        dataset = self.subject_list[mid].split("/")[0]
        render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject])

        if not osp.exists(osp.join(self.root, render_folder)):
            render_folder = "/".join([dataset + "_36views", subject])

        # setup paths
        data_dict = {
            "dataset": dataset,
            "subject": subject,
            "rotation": rotation,
            "scale": self.datasets_dict[dataset]["scale"],
            "calib_path": osp.join(self.root, render_folder, "calib", f"{rotation:03d}.txt"),
            "image_path": osp.join(self.root, render_folder, "render", f"{rotation:03d}.png"),
        }

        if dataset == "cape":
            data_dict.update({
                "mesh_path":
                osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"),
                "smpl_path":
                osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"),
            })
        else:

            data_dict.update({
                "mesh_path":
                osp.join(
                    self.datasets_dict[dataset]["mesh_dir"],
                    f"{subject}.obj",
                ),
                "smplx_path":
                osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"),
            })

        # load training data
        data_dict.update(self.load_calib(data_dict))

        # image/normal/depth loader
        for name, channel in zip(self.in_total, self.in_total_dim):

            if f"{name}_path" not in data_dict.keys():
                data_dict.update({
                    f"{name}_path":
                    osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
                })

            # tensor update
            if os.path.exists(data_dict[f"{name}_path"]):
                data_dict.update({
                    name:
                    self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False)
                })

        data_dict.update(self.load_mesh(data_dict))
        data_dict.update(self.load_smpl(data_dict))

        del data_dict["mesh"]

        return data_dict

    def imagepath2tensor(self, path, channel=3, inv=False):

        rgba = Image.open(path).convert("RGBA")

        # remove CAPE's noisy outliers using OpenCV's inpainting
        if "cape" in path and "T_" not in path:
            mask = cv2.imread(path.replace(path.split("/")[-2], "mask"), 0) > 1
            img = np.asarray(rgba)[:, :, :3]
            fill_mask = ((mask & (img.sum(axis=2) == 0))).astype(np.uint8)
            image = Image.fromarray(
                cv2.inpaint(img * mask[..., None], fill_mask, 3, cv2.INPAINT_TELEA)
            )
            mask = Image.fromarray(mask)
        else:
            mask = rgba.split()[-1]
            image = rgba.convert("RGB")

        image = self.image_to_tensor(image)
        mask = self.mask_to_tensor(mask)
        image = (image * mask)[:channel]

        return (image * (0.5 - inv) * 2.0).float()

    def load_calib(self, data_dict):
        calib_data = np.loadtxt(data_dict["calib_path"], dtype=float)
        extrinsic = calib_data[:4, :4]
        intrinsic = calib_data[4:8, :4]
        calib_mat = np.matmul(intrinsic, extrinsic)
        calib_mat = torch.from_numpy(calib_mat).float()
        return {"calib": calib_mat}

    def load_mesh(self, data_dict):

        mesh_path = data_dict["mesh_path"]
        scale = data_dict["scale"]

        scan_mesh = trimesh.load(mesh_path)
        verts = scan_mesh.vertices
        faces = scan_mesh.faces

        mesh = HoppeMesh(verts * scale, faces)

        return {
            "mesh": mesh,
            "verts": torch.as_tensor(verts * scale).float(),
            "faces": torch.as_tensor(faces).long(),
        }

    def load_smpl(self, data_dict):

        smpl_type = ("smplx" if ("smplx_path" in data_dict.keys()) else "smpl")

        smplx_verts = rescale_smpl(data_dict[f"{smpl_type}_path"], scale=100.0)
        smplx_faces = torch.as_tensor(getattr(self.smplx, f"{smpl_type}_faces")).long()
        smplx_verts = projection(smplx_verts, data_dict["calib"]).float()

        return_dict = {
            "smpl_verts": smplx_verts,
            "smpl_faces": smplx_faces,
        }

        return return_dict

    def depth_to_voxel(self, data_dict):

        data_dict["depth_F"] = transforms.Resize(self.vol_res)(data_dict["depth_F"])
        data_dict["depth_B"] = transforms.Resize(self.vol_res)(data_dict["depth_B"])

        depth_mask = (~torch.isnan(data_dict['depth_F']))
        depth_FB = torch.cat([data_dict['depth_F'], data_dict['depth_B']], dim=0)
        depth_FB[:, ~depth_mask[0]] = 0.

        # Important: index_long = depth_value - 1
        index_z = (((depth_FB + 1.) * 0.5 * self.vol_res) - 1).clip(0, self.vol_res -
                                                                    1).permute(1, 2, 0)
        index_z_ceil = torch.ceil(index_z).long()
        index_z_floor = torch.floor(index_z).long()
        index_z_frac = torch.frac(index_z)

        index_mask = index_z[..., 0] == torch.tensor(self.vol_res * 0.5 - 1).long()
        voxels = F.one_hot(index_z_ceil[..., 0], self.vol_res) * index_z_frac[..., 0] + \
            F.one_hot(index_z_floor[..., 0], self.vol_res) * (1.0-index_z_frac[..., 0]) + \
            F.one_hot(index_z_ceil[..., 1], self.vol_res) * index_z_frac[..., 1]+ \
            F.one_hot(index_z_floor[..., 1], self.vol_res) * (1.0 - index_z_frac[..., 1])

        voxels[index_mask] *= 0
        voxels = torch.flip(voxels, [2]).permute(2, 0, 1).float()    #[x-2, y-0, z-1]

        return {
            "depth_voxels": voxels.flip([
                0,
            ]).unsqueeze(0).to(self.device),
        }

    def render_depth(self, verts, faces):

        # render optimized mesh (normal, T_normal, image [-1,1])
        self.render.load_meshes(verts, faces)
        return self.render.get_image(type="depth")