Spaces:
Runtime error
Runtime error
File size: 18,461 Bytes
da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import cv2
import mediapipe as mp
import torch
import numpy as np
import torch.nn.functional as F
from rembg import remove
from rembg.session_factory import new_session
from PIL import Image
from torchvision.models import detection
from lib.pymafx.core import constants
from lib.common.cloth_extraction import load_segmentation
from torchvision import transforms
def transform_to_tensor(res, mean=None, std=None, is_tensor=False):
all_ops = []
if res is not None:
all_ops.append(transforms.Resize(size=res))
if not is_tensor:
all_ops.append(transforms.ToTensor())
if mean is not None and std is not None:
all_ops.append(transforms.Normalize(mean=mean, std=std))
return transforms.Compose(all_ops)
def aug_matrix(w1, h1, w2, h2):
dx = (w2 - w1) / 2.0
dy = (h2 - h1) / 2.0
matrix_trans = np.array([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0]])
scale = np.min([float(w2) / w1, float(h2) / h1])
M = get_affine_matrix(center=(w2 / 2.0, h2 / 2.0), translate=(0, 0), scale=scale)
M = np.array(M + [0.0, 0.0, 1.0]).reshape(3, 3)
M = M.dot(matrix_trans)
return M
def get_affine_matrix(center, translate, scale):
cx, cy = center
tx, ty = translate
M = [1, 0, 0, 0, 1, 0]
M = [x * scale for x in M]
# Apply translation and of center translation: RSS * C^-1
M[2] += M[0] * (-cx) + M[1] * (-cy)
M[5] += M[3] * (-cx) + M[4] * (-cy)
# Apply center translation: T * C * RSS * C^-1
M[2] += cx + tx
M[5] += cy + ty
return M
def load_img(img_file):
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if not img_file.endswith("png"):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
return img
def get_keypoints(image):
def collect_xyv(x, body=True):
lmk = x.landmark
all_lmks = []
for i in range(len(lmk)):
visibility = lmk[i].visibility if body else 1.0
all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility]))
return torch.stack(all_lmks).view(-1, 4)
mp_holistic = mp.solutions.holistic
with mp_holistic.Holistic(
static_image_mode=True,
model_complexity=2,
) as holistic:
results = holistic.process(image)
fake_kps = torch.zeros(33, 4)
result = {}
result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps
result["lhand"] = collect_xyv(results.left_hand_landmarks, False) if results.left_hand_landmarks else fake_kps
result["rhand"] = collect_xyv(results.right_hand_landmarks, False) if results.right_hand_landmarks else fake_kps
result["face"] = collect_xyv(results.face_landmarks, False) if results.face_landmarks else fake_kps
return result
def get_pymafx(image, landmarks):
# image [3,512,512]
item = {'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]}
for part in ['lhand', 'rhand', 'face']:
kp2d = landmarks[part]
kp2d_valid = kp2d[kp2d[:, 3] > 0.]
if len(kp2d_valid) > 0:
bbox = [min(kp2d_valid[:, 0]), min(kp2d_valid[:, 1]), max(kp2d_valid[:, 0]), max(kp2d_valid[:, 1])]
center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.]
scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2
# handle invalid part keypoints
if len(kp2d_valid) < 1 or scale_part < 0.01:
center_part = [0, 0]
scale_part = 0.5
kp2d[:, 3] = 0
center_part = torch.tensor(center_part).float()
theta_part = torch.zeros(1, 2, 3)
theta_part[:, 0, 0] = scale_part
theta_part[:, 1, 1] = scale_part
theta_part[:, :, -1] = center_part
grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False)
img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float()
item[f'img_{part}'] = img_part
theta_i_inv = torch.zeros_like(theta_part)
theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0]
theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1]
theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1)
item[f'{part}_theta_inv'] = theta_i_inv[0]
return item
def expand_bbox(bbox, width, height, ratio=0.1):
bbox = np.around(bbox).astype(np.int16)
bbox_width = bbox[2] - bbox[0]
bbox_height = bbox[3] - bbox[1]
bbox[1] = max(bbox[1] - bbox_height * ratio, 0)
bbox[3] = min(bbox[3] + bbox_height * ratio, height)
bbox[0] = max(bbox[0] - bbox_width * ratio, 0)
bbox[2] = min(bbox[2] + bbox_width * ratio, width)
return bbox
def remove_floats(mask):
# 1. find all the contours
# 2. fillPoly "True" for the largest one
# 3. fillPoly "False" for its childrens
new_mask = np.zeros(mask.shape)
cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True)
body_cnt = cnts[cnt_index[0]]
childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0]
childs_cnt = [cnts[idx] for idx in childs_cnt_idx]
cv2.fillPoly(new_mask, [body_cnt], 1)
cv2.fillPoly(new_mask, childs_cnt, 0)
return new_mask
def process_image(img_file, hps_type, single, input_res=512):
img_raw = load_img(img_file)
in_height, in_width = img_raw.shape[:2]
M = aug_matrix(in_width, in_height, input_res * 2, input_res * 2)
# from rectangle to square by padding (input_res*2, input_res*2)
img_square = cv2.warpAffine(img_raw, M[0:2, :], (input_res * 2, input_res * 2), flags=cv2.INTER_CUBIC)
# detection for bbox
detector = detection.maskrcnn_resnet50_fpn(weights=detection.MaskRCNN_ResNet50_FPN_V2_Weights)
detector.eval()
predictions = detector([torch.from_numpy(img_square).permute(2, 0, 1) / 255.])[0]
if single:
top_score = predictions["scores"][predictions["labels"] == 1].max()
human_ids = torch.where(predictions["scores"] == top_score)[0]
else:
human_ids = torch.logical_and(predictions["labels"] == 1, predictions["scores"] > 0.9).nonzero().squeeze(1)
boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy()
masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy()
width = boxes[:, 2] - boxes[:, 0] #(N,)
height = boxes[:, 3] - boxes[:, 1] #(N,)
center = np.array([(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]).T #(N,2)
scale = np.array([width, height]).max(axis=0) / 90.
img_icon_lst = []
img_crop_lst = []
img_hps_lst = []
img_mask_lst = []
uncrop_param_lst = []
landmark_lst = []
hands_visibility_lst = []
img_pymafx_lst = []
uncrop_param = {
"center": center,
"scale": scale,
"ori_shape": [in_height, in_width],
"box_shape": [input_res, input_res],
"crop_shape": [input_res * 2, input_res * 2, 3],
"M": M,
}
for idx in range(len(boxes)):
# mask out the pixels of others
if len(masks) > 1:
mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0)
else:
mask_detection = masks[0] * 0.
img_crop, _ = crop(
np.concatenate([img_square, (mask_detection < 0.4) * 255], axis=2), center[idx], scale[idx], [input_res, input_res])
# get accurate segmentation mask of focus person
img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net"))
img_mask = remove_floats(img_rembg[:, :, [3]])
# required image tensors / arrays
# img_icon (tensor): (-1, 1), [3,512,512]
# img_hps (tensor): (-2.11, 2.44), [3,224,224]
# img_np (array): (0, 255), [512,512,3]
# img_rembg (array): (0, 255), [512,512,4]
# img_mask (array): (0, 1), [512,512,1]
# img_crop (array): (0, 255), [512,512,4]
mean_icon = std_icon = (0.5, 0.5, 0.5)
img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8)
img_icon = transform_to_tensor(512, mean_icon, std_icon)(Image.fromarray(img_np)) * torch.tensor(img_mask).permute(
2, 0, 1)
img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np))
landmarks = get_keypoints(img_np)
if hps_type == 'pymafx':
img_pymafx_lst.append(
get_pymafx(
transform_to_tensor(512, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)),
landmarks))
img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0)
img_icon_lst.append(img_icon)
img_hps_lst.append(img_hps)
img_mask_lst.append(torch.tensor(img_mask[..., 0]))
uncrop_param_lst.append(uncrop_param)
landmark_lst.append(landmarks['body'])
hands_visibility = [True, True]
if landmarks['lhand'][:, -1].mean() == 0.:
hands_visibility[0] = False
if landmarks['rhand'][:, -1].mean() == 0.:
hands_visibility[1] = False
hands_visibility_lst.append(hands_visibility)
return_dict = {
"img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res]
"img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res]
"img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res]
"img_raw": img_raw, #[H, W, 3]
"img_mask": torch.stack(img_mask_lst).float(), #[N, res, res]
"uncrop_param": uncrop_param,
"landmark": torch.stack(landmark_lst), #[N, 33, 4]
"hands_visibility": hands_visibility_lst,
}
img_pymafx = {}
if len(img_pymafx_lst) > 0:
for idx in range(len(img_pymafx_lst)):
for key in img_pymafx_lst[idx].keys():
if key not in img_pymafx.keys():
img_pymafx[key] = [img_pymafx_lst[idx][key]]
else:
img_pymafx[key] += [img_pymafx_lst[idx][key]]
for key in img_pymafx.keys():
img_pymafx[key] = torch.stack(img_pymafx[key]).float()
return_dict.update({"img_pymafx": img_pymafx})
return return_dict
def get_transform(center, scale, res):
"""Generate transformation matrix."""
h = 100 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + 0.5)
t[1, 2] = res[0] * (-float(center[1]) / h + 0.5)
t[2, 2] = 1
return t
def transform(pt, center, scale, res, invert=0):
"""Transform pixel location to different reference."""
t = get_transform(center, scale, res)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.0]).T
new_pt = np.dot(t, new_pt)
return np.around(new_pt[:2]).astype(np.int16)
def crop(img, center, scale, res):
"""Crop image according to the supplied bounding box."""
img_height, img_width = img.shape[:2]
# Upper left point
ul = np.array(transform([0, 0], center, scale, res, invert=1))
# Bottom right point
br = np.array(transform(res, center, scale, res, invert=1))
new_shape = [br[1] - ul[1], br[0] - ul[0]]
if len(img.shape) > 2:
new_shape += [img.shape[2]]
new_img = np.zeros(new_shape)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], img_width) - ul[0]
new_y = max(0, -ul[1]), min(br[1], img_height) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(img_width, br[0])
old_y = max(0, ul[1]), min(img_height, br[1])
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]
new_img = F.interpolate(
torch.tensor(new_img).permute(2, 0, 1).unsqueeze(0), res, mode='bilinear').permute(0, 2, 3,
1)[0].numpy().astype(np.uint8)
return new_img, (old_x, new_x, old_y, new_y, new_shape)
def crop_segmentation(org_coord, res, cropping_parameters):
old_x, new_x, old_y, new_y, new_shape = cropping_parameters
new_coord = np.zeros((org_coord.shape))
new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0])
new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0])
new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1])
new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0])
return new_coord
def corner_align(ul, br):
if ul[1] - ul[0] != br[1] - br[0]:
ul[1] = ul[0] + br[1] - br[0]
return ul, br
def uncrop(img, center, scale, orig_shape):
"""'Undo' the image cropping/resizing.
This function is used when evaluating mask/part segmentation.
"""
res = img.shape[:2]
# Upper left point
ul = np.array(transform([0, 0], center, scale, res, invert=1))
# Bottom right point
br = np.array(transform(res, center, scale, res, invert=1))
# quick fix
ul, br = corner_align(ul, br)
# size of cropped image
crop_shape = [br[1] - ul[1], br[0] - ul[0]]
new_img = np.zeros(orig_shape, dtype=np.uint8)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(orig_shape[1], br[0])
old_y = max(0, ul[1]), min(orig_shape[0], br[1])
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape))
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
return new_img
def rot_aa(aa, rot):
"""Rotate axis angle parameters."""
# pose parameters
R = np.array([
[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
[0, 0, 1],
])
# find the rotation of the body in camera frame
per_rdg, _ = cv2.Rodrigues(aa)
# apply the global rotation to the global orientation
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
aa = (resrot.T)[0]
return aa
def flip_img(img):
"""Flip rgb images or masks.
channels come last, e.g. (256,256,3).
"""
img = np.fliplr(img)
return img
def flip_kp(kp, is_smpl=False):
"""Flip keypoints."""
if len(kp) == 24:
if is_smpl:
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM
else:
flipped_parts = constants.J24_FLIP_PERM
elif len(kp) == 49:
if is_smpl:
flipped_parts = constants.SMPL_J49_FLIP_PERM
else:
flipped_parts = constants.J49_FLIP_PERM
kp = kp[flipped_parts]
kp[:, 0] = -kp[:, 0]
return kp
def flip_pose(pose):
"""Flip pose.
The flipping is based on SMPL parameters.
"""
flipped_parts = constants.SMPL_POSE_FLIP_PERM
pose = pose[flipped_parts]
# we also negate the second and the third dimension of the axis-angle
pose[1::3] = -pose[1::3]
pose[2::3] = -pose[2::3]
return pose
def normalize_2d_kp(kp_2d, crop_size=224, inv=False):
# Normalize keypoints between -1, 1
if not inv:
ratio = 1.0 / crop_size
kp_2d = 2.0 * kp_2d * ratio - 1.0
else:
ratio = 1.0 / crop_size
kp_2d = (kp_2d + 1.0) / (2 * ratio)
return kp_2d
def visualize_landmarks(image, joints, color):
img_w, img_h = image.shape[:2]
for joint in joints:
image = cv2.circle(image, (int(joint[0] * img_w), int(joint[1] * img_h)), 5, color)
return image
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None):
"""
param joints: [num_joints, 3]
param joints_vis: [num_joints, 3]
return: target, target_weight(1: visible, 0: invisible)
"""
num_joints = joints.shape[0]
device = joints.device
cur_device = torch.device(device.type, device.index)
if not hasattr(heatmap_size, "__len__"):
# width height
heatmap_size = [heatmap_size, heatmap_size]
assert len(heatmap_size) == 2
target_weight = np.ones((num_joints, 1), dtype=np.float32)
if joints_vis is not None:
target_weight[:, 0] = joints_vis[:, 0]
target = torch.zeros(
(num_joints, heatmap_size[1], heatmap_size[0]),
dtype=torch.float32,
device=cur_device,
)
tmp_size = sigma * 3
for joint_id in range(num_joints):
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5)
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if (ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] or br[0] < 0 or br[1] < 0):
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
size = 2 * tmp_size + 1
# x = np.arange(0, size, 1, np.float32)
# y = x[:, np.newaxis]
# x0 = y0 = size // 2
# # The gaussian is not normalized, we want the center value to equal 1
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
# g = torch.from_numpy(g.astype(np.float32))
x = torch.arange(0, size, dtype=torch.float32, device=cur_device)
y = x.unsqueeze(-1)
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], heatmap_size[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return target, target_weight
|