File size: 7,460 Bytes
da48dbe
 
 
3577d3c
da48dbe
 
c3d3e4a
 
 
 
 
 
da48dbe
c3d3e4a
da48dbe
3577d3c
 
 
 
 
 
da48dbe
3577d3c
c3d3e4a
3577d3c
c3d3e4a
 
da48dbe
c3d3e4a
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
3577d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
3577d3c
 
c3d3e4a
 
 
3577d3c
c3d3e4a
3577d3c
c3d3e4a
3577d3c
c3d3e4a
fb140f6
 
c3d3e4a
 
 
3577d3c
 
 
 
 
 
fb140f6
 
 
3577d3c
c3d3e4a
 
3577d3c
c3d3e4a
3577d3c
 
 
c3d3e4a
 
 
3577d3c
fb140f6
 
c3d3e4a
3577d3c
 
 
 
 
 
 
 
 
c3d3e4a
3577d3c
 
c3d3e4a
 
3577d3c
c3d3e4a
fb140f6
 
 
 
 
 
 
c3d3e4a
 
 
 
3577d3c
 
c3d3e4a
 
3577d3c
 
 
 
c3d3e4a
3577d3c
c3d3e4a
 
3577d3c
 
c3d3e4a
3577d3c
 
c3d3e4a
3577d3c
 
c3d3e4a
 
3577d3c
c3d3e4a
 
3577d3c
 
fb140f6
 
 
3577d3c
c3d3e4a
 
 
3577d3c
 
 
fb140f6
 
 
3577d3c
 
 
 
 
 
 
 
 
c3d3e4a
3577d3c
 
 
c3d3e4a
 
fb140f6
 
da48dbe
3577d3c
fb140f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import trimesh
import torch
import argparse
import os.path as osp
import lib.smplx as smplx
from pytorch3d.ops import SubdivideMeshes
from pytorch3d.structures import Meshes

from lib.smplx.lbs import general_lbs
from lib.dataset.mesh_util import keep_largest, poisson
from scipy.spatial import cKDTree
from lib.dataset.mesh_util import SMPLX
from lib.common.local_affine import register

# loading cfg file
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--name", type=str, default="")
parser.add_argument("-g", "--gpu", type=int, default=0)
args = parser.parse_args()

smplx_container = SMPLX()
device = torch.device(f"cuda:{args.gpu}")

prefix = f"./results/econ/obj/{args.name}"
smpl_path = f"{prefix}_smpl_00.npy"
econ_path = f"{prefix}_0_full.obj"

smplx_param = np.load(smpl_path, allow_pickle=True).item()
econ_obj = trimesh.load(econ_path)
econ_obj.vertices *= np.array([1.0, -1.0, -1.0])
econ_obj.vertices /= smplx_param["scale"].cpu().numpy()
econ_obj.vertices -= smplx_param["transl"].cpu().numpy()

for key in smplx_param.keys():
    smplx_param[key] = smplx_param[key].cpu().view(1, -1)

smpl_model = smplx.create(
    smplx_container.model_dir,
    model_type="smplx",
    gender="neutral",
    age="adult",
    use_face_contour=False,
    use_pca=False,
    num_betas=200,
    num_expression_coeffs=50,
    ext='pkl'
)

smpl_out_lst = []

for pose_type in ["t-pose", "da-pose", "pose"]:
    smpl_out_lst.append(
        smpl_model(
            body_pose=smplx_param["body_pose"],
            global_orient=smplx_param["global_orient"],
            betas=smplx_param["betas"],
            expression=smplx_param["expression"],
            jaw_pose=smplx_param["jaw_pose"],
            left_hand_pose=smplx_param["left_hand_pose"],
            right_hand_pose=smplx_param["right_hand_pose"],
            return_verts=True,
            return_full_pose=True,
            return_joint_transformation=True,
            return_vertex_transformation=True,
            pose_type=pose_type
        )
    )

smpl_verts = smpl_out_lst[2].vertices.detach()[0]
smpl_tree = cKDTree(smpl_verts.cpu().numpy())
dist, idx = smpl_tree.query(econ_obj.vertices, k=5)

if not osp.exists(f"{prefix}_econ_da.obj") or not osp.exists(f"{prefix}_smpl_da.obj"):

    # t-pose for ECON
    econ_verts = torch.tensor(econ_obj.vertices).float()
    rot_mat_t = smpl_out_lst[2].vertex_transformation.detach()[0][idx[:, 0]]
    homo_coord = torch.ones_like(econ_verts)[..., :1]
    econ_cano_verts = torch.inverse(rot_mat_t) @ torch.cat([econ_verts, homo_coord],
                                                           dim=1).unsqueeze(-1)
    econ_cano_verts = econ_cano_verts[:, :3, 0].cpu()
    econ_cano = trimesh.Trimesh(econ_cano_verts, econ_obj.faces)

    # da-pose for ECON
    rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]]
    econ_da_verts = rot_mat_da @ torch.cat([econ_cano_verts, homo_coord], dim=1).unsqueeze(-1)
    econ_da = trimesh.Trimesh(econ_da_verts[:, :3, 0].cpu(), econ_obj.faces)

    # da-pose for SMPL-X
    smpl_da = trimesh.Trimesh(
        smpl_out_lst[1].vertices.detach()[0], smpl_model.faces, maintain_orders=True, process=False
    )
    smpl_da.export(f"{prefix}_smpl_da.obj")

    # remove hands from ECON for next registeration
    econ_da_body = econ_da.copy()
    mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid)
    econ_da_body.update_faces(mano_mask[econ_da.faces].all(axis=1))
    econ_da_body.remove_unreferenced_vertices()
    econ_da_body = keep_largest(econ_da_body)

    # remove SMPL-X hand and face
    register_mask = ~np.isin(
        np.arange(smpl_da.vertices.shape[0]),
        np.concatenate([smplx_container.smplx_mano_vid, smplx_container.smplx_front_flame_vid])
    )
    register_mask *= ~smplx_container.eyeball_vertex_mask.bool().numpy()
    smpl_da_body = smpl_da.copy()
    smpl_da_body.update_faces(register_mask[smpl_da.faces].all(axis=1))
    smpl_da_body.remove_unreferenced_vertices()
    smpl_da_body = keep_largest(smpl_da_body)

    # upsample the smpl_da_body and do registeration
    smpl_da_body = Meshes(
        verts=[torch.tensor(smpl_da_body.vertices).float()],
        faces=[torch.tensor(smpl_da_body.faces).long()],
    ).to(device)
    sm = SubdivideMeshes(smpl_da_body)
    smpl_da_body = register(econ_da_body, sm(smpl_da_body), device)

    # remove over-streched+hand faces from ECON
    econ_da_body = econ_da.copy()
    edge_before = np.sqrt(
        ((econ_obj.vertices[econ_cano.edges[:, 0]] -
          econ_obj.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1)
    )
    edge_after = np.sqrt(
        ((econ_da.vertices[econ_cano.edges[:, 0]] -
          econ_da.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1)
    )
    edge_diff = edge_after / edge_before.clip(1e-2)
    streched_mask = np.unique(econ_cano.edges[edge_diff > 6])
    mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid)
    mano_mask[streched_mask] = False
    econ_da_body.update_faces(mano_mask[econ_cano.faces].all(axis=1))
    econ_da_body.remove_unreferenced_vertices()

    # stitch the registered SMPL-X body and floating hands to ECON
    econ_da_tree = cKDTree(econ_da.vertices)
    dist, idx = econ_da_tree.query(smpl_da_body.vertices, k=1)
    smpl_da_body.update_faces((dist > 0.02)[smpl_da_body.faces].all(axis=1))
    smpl_da_body.remove_unreferenced_vertices()

    smpl_hand = smpl_da.copy()
    smpl_hand.update_faces(smplx_container.mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1))
    smpl_hand.remove_unreferenced_vertices()
    econ_da = sum([smpl_hand, smpl_da_body, econ_da_body])
    econ_da = poisson(econ_da, f"{prefix}_econ_da.obj")
else:
    econ_da = trimesh.load(f"{prefix}_econ_da.obj")
    smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False)

smpl_tree = cKDTree(smpl_da.vertices)
dist, idx = smpl_tree.query(econ_da.vertices, k=5)
knn_weights = np.exp(-dist**2)
knn_weights /= knn_weights.sum(axis=1, keepdims=True)

econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(axis=-1)
econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(axis=-1).T

num_posedirs = smpl_model.posedirs.shape[0]
econ_posedirs = (
    smpl_model.posedirs.view(num_posedirs, -1, 3)[:, idx, :] * knn_weights[None, ..., None]
).sum(axis=-2).view(num_posedirs, -1).float()

econ_J_regressor /= econ_J_regressor.sum(axis=1, keepdims=True)
econ_lbs_weights /= econ_lbs_weights.sum(axis=1, keepdims=True)

# re-compute da-pose rot_mat for ECON
rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]]
econ_da_verts = torch.tensor(econ_da.vertices).float()
econ_cano_verts = torch.inverse(rot_mat_da) @ torch.cat(
    [econ_da_verts, torch.ones_like(econ_da_verts)[..., :1]], dim=1
).unsqueeze(-1)
econ_cano_verts = econ_cano_verts[:, :3, 0].double()

# ----------------------------------------------------
# use any SMPL-X pose to animate ECON reconstruction
# ----------------------------------------------------

new_pose = smpl_out_lst[2].full_pose
new_pose[:, :3] = 0.

posed_econ_verts, _ = general_lbs(
    pose=new_pose,
    v_template=econ_cano_verts.unsqueeze(0),
    posedirs=econ_posedirs,
    J_regressor=econ_J_regressor,
    parents=smpl_model.parents,
    lbs_weights=econ_lbs_weights
)

econ_pose = trimesh.Trimesh(posed_econ_verts[0].detach(), econ_da.faces)
econ_pose.export(f"{prefix}_econ_pose.obj")