_ / inpalib /samlib.py
Zafaflahfksdf's picture
Upload folder using huggingface_hub
da3eeba verified
raw
history blame
8.54 kB
import copy
import os
import sys
from typing import Any, Dict, List, Union
import cv2
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
inpa_basedir = os.path.normpath(os.path.join(os.path.dirname(__file__), ".."))
if inpa_basedir not in sys.path:
sys.path.append(inpa_basedir)
from ia_file_manager import ia_file_manager # noqa: E402
from ia_get_dataset_colormap import create_pascal_label_colormap # noqa: E402
from ia_logging import ia_logging # noqa: E402
from ia_sam_manager import check_bfloat16_support, get_sam_mask_generator # noqa: E402
from ia_ui_items import get_sam_model_ids # noqa: E402
def get_all_sam_ids() -> List[str]:
"""Get all SAM IDs.
Returns:
List[str]: SAM IDs
"""
return get_sam_model_ids()
def sam_file_path(sam_id: str) -> str:
"""Get SAM file path.
Args:
sam_id (str): SAM ID
Returns:
str: SAM file path
"""
return os.path.join(ia_file_manager.models_dir, sam_id)
def sam_file_exists(sam_id: str) -> bool:
"""Check if SAM file exists.
Args:
sam_id (str): SAM ID
Returns:
bool: True if SAM file exists else False
"""
sam_checkpoint = sam_file_path(sam_id)
return os.path.isfile(sam_checkpoint)
def get_available_sam_ids() -> List[str]:
"""Get available SAM IDs.
Returns:
List[str]: available SAM IDs
"""
all_sam_ids = get_all_sam_ids()
for sam_id in all_sam_ids.copy():
if not sam_file_exists(sam_id):
all_sam_ids.remove(sam_id)
return all_sam_ids
def check_inputs_generate_sam_masks(
input_image: Union[np.ndarray, Image.Image],
sam_id: str,
anime_style_chk: bool = False,
) -> None:
"""Check generate SAM masks inputs.
Args:
input_image (Union[np.ndarray, Image.Image]): input image
sam_id (str): SAM ID
anime_style_chk (bool): anime style check
Returns:
None
"""
if input_image is None or not isinstance(input_image, (np.ndarray, Image.Image)):
raise ValueError("Invalid input image")
if sam_id is None or not isinstance(sam_id, str):
raise ValueError("Invalid SAM ID")
if anime_style_chk is None or not isinstance(anime_style_chk, bool):
raise ValueError("Invalid anime style check")
def convert_input_image(input_image: Union[np.ndarray, Image.Image]) -> np.ndarray:
"""Convert input image.
Args:
input_image (Union[np.ndarray, Image.Image]): input image
Returns:
np.ndarray: converted input image
"""
if isinstance(input_image, Image.Image):
input_image = np.array(input_image)
if input_image.ndim == 2:
input_image = input_image[:, :, np.newaxis]
if input_image.shape[2] == 1:
input_image = np.concatenate([input_image] * 3, axis=-1)
return input_image
def generate_sam_masks(
input_image: Union[np.ndarray, Image.Image],
sam_id: str,
anime_style_chk: bool = False,
) -> List[Dict[str, Any]]:
"""Generate SAM masks.
Args:
input_image (Union[np.ndarray, Image.Image]): input image
sam_id (str): SAM ID
anime_style_chk (bool): anime style check
Returns:
List[Dict[str, Any]]: SAM masks
"""
check_inputs_generate_sam_masks(input_image, sam_id, anime_style_chk)
input_image = convert_input_image(input_image)
sam_checkpoint = sam_file_path(sam_id)
sam_mask_generator = get_sam_mask_generator(sam_checkpoint, anime_style_chk)
ia_logging.info(f"{sam_mask_generator.__class__.__name__} {sam_id}")
if "sam2_" in sam_id:
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if check_bfloat16_support() else torch.float16
with torch.inference_mode(), torch.autocast(device, dtype=torch_dtype):
sam_masks = sam_mask_generator.generate(input_image)
else:
sam_masks = sam_mask_generator.generate(input_image)
if anime_style_chk:
for sam_mask in sam_masks:
sam_mask_seg = sam_mask["segmentation"]
sam_mask_seg = cv2.morphologyEx(sam_mask_seg.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((5, 5), np.uint8))
sam_mask_seg = cv2.morphologyEx(sam_mask_seg.astype(np.uint8), cv2.MORPH_OPEN, np.ones((5, 5), np.uint8))
sam_mask["segmentation"] = sam_mask_seg.astype(bool)
ia_logging.info("sam_masks: {}".format(len(sam_masks)))
sam_masks = copy.deepcopy(sam_masks)
return sam_masks
def sort_masks_by_area(
sam_masks: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
"""Sort mask by area.
Args:
sam_masks (List[Dict[str, Any]]): SAM masks
Returns:
List[Dict[str, Any]]: sorted SAM masks
"""
return sorted(sam_masks, key=lambda x: np.sum(x.get("segmentation").astype(np.uint32)))
def get_seg_colormap() -> np.ndarray:
"""Get segmentation colormap.
Returns:
np.ndarray: segmentation colormap
"""
cm_pascal = create_pascal_label_colormap()
seg_colormap = cm_pascal
seg_colormap = np.array([c for c in seg_colormap if max(c) >= 64], dtype=np.uint8)
return seg_colormap
def insert_mask_to_sam_masks(
sam_masks: List[Dict[str, Any]],
insert_mask: Dict[str, Any],
) -> List[Dict[str, Any]]:
"""Insert mask to SAM masks.
Args:
sam_masks (List[Dict[str, Any]]): SAM masks
insert_mask (Dict[str, Any]): insert mask
Returns:
List[Dict[str, Any]]: SAM masks
"""
if insert_mask is not None and isinstance(insert_mask, dict) and "segmentation" in insert_mask:
if (len(sam_masks) > 0 and
sam_masks[0]["segmentation"].shape == insert_mask["segmentation"].shape and
np.any(insert_mask["segmentation"])):
sam_masks.insert(0, insert_mask)
ia_logging.info("insert mask to sam_masks")
return sam_masks
def create_seg_color_image(
input_image: Union[np.ndarray, Image.Image],
sam_masks: List[Dict[str, Any]],
) -> np.ndarray:
"""Create segmentation color image.
Args:
input_image (Union[np.ndarray, Image.Image]): input image
sam_masks (List[Dict[str, Any]]): SAM masks
Returns:
np.ndarray: segmentation color image
"""
input_image = convert_input_image(input_image)
seg_colormap = get_seg_colormap()
sam_masks = sam_masks[:len(seg_colormap)]
with tqdm(total=len(sam_masks), desc="Processing segments") as progress_bar:
canvas_image = np.zeros((*input_image.shape[:2], 1), dtype=np.uint8)
for idx, seg_dict in enumerate(sam_masks[0:min(255, len(sam_masks))]):
seg_mask = np.expand_dims(seg_dict["segmentation"].astype(np.uint8), axis=-1)
canvas_mask = np.logical_not(canvas_image.astype(bool)).astype(np.uint8)
seg_color = np.array([idx+1], dtype=np.uint8) * seg_mask * canvas_mask
canvas_image = canvas_image + seg_color
progress_bar.update(1)
seg_colormap = np.insert(seg_colormap, 0, [0, 0, 0], axis=0)
temp_canvas_image = np.apply_along_axis(lambda x: seg_colormap[x[0]], axis=-1, arr=canvas_image)
if len(sam_masks) > 255:
canvas_image = canvas_image.astype(bool).astype(np.uint8)
for idx, seg_dict in enumerate(sam_masks[255:min(509, len(sam_masks))]):
seg_mask = np.expand_dims(seg_dict["segmentation"].astype(np.uint8), axis=-1)
canvas_mask = np.logical_not(canvas_image.astype(bool)).astype(np.uint8)
seg_color = np.array([idx+2], dtype=np.uint8) * seg_mask * canvas_mask
canvas_image = canvas_image + seg_color
progress_bar.update(1)
seg_colormap = seg_colormap[256:]
seg_colormap = np.insert(seg_colormap, 0, [0, 0, 0], axis=0)
seg_colormap = np.insert(seg_colormap, 0, [0, 0, 0], axis=0)
canvas_image = np.apply_along_axis(lambda x: seg_colormap[x[0]], axis=-1, arr=canvas_image)
canvas_image = temp_canvas_image + canvas_image
else:
canvas_image = temp_canvas_image
ret_seg_image = canvas_image.astype(np.uint8)
return ret_seg_image