Spaces:
Runtime error
Runtime error
import gc | |
import PIL.Image | |
import cv2 | |
import numpy as np | |
import torch | |
from diffusers import ControlNetModel | |
from loguru import logger | |
from lama_cleaner.model.base import DiffusionInpaintModel | |
from lama_cleaner.model.utils import torch_gc, get_scheduler | |
from lama_cleaner.schema import Config | |
class CPUTextEncoderWrapper: | |
def __init__(self, text_encoder, torch_dtype): | |
self.config = text_encoder.config | |
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True) | |
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True) | |
self.torch_dtype = torch_dtype | |
del text_encoder | |
torch_gc() | |
def __call__(self, x, **kwargs): | |
input_device = x.device | |
return [ | |
self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0] | |
.to(input_device) | |
.to(self.torch_dtype) | |
] | |
def dtype(self): | |
return self.torch_dtype | |
NAMES_MAP = { | |
"sd1.5": "runwayml/stable-diffusion-inpainting", | |
"anything4": "Sanster/anything-4.0-inpainting", | |
"realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting", | |
} | |
NATIVE_NAMES_MAP = { | |
"sd1.5": "runwayml/stable-diffusion-v1-5", | |
"anything4": "andite/anything-v4.0", | |
"realisticVision1.4": "SG161222/Realistic_Vision_V1.4", | |
} | |
def make_inpaint_condition(image, image_mask): | |
""" | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
""" | |
image = image.astype(np.float32) / 255.0 | |
image[image_mask[:, :, -1] > 128] = -1.0 # set as masked pixel | |
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return image | |
def load_from_local_model( | |
local_model_path, torch_dtype, controlnet, pipe_class, is_native_control_inpaint | |
): | |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( | |
download_from_original_stable_diffusion_ckpt, | |
) | |
logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline") | |
try: | |
pipe = download_from_original_stable_diffusion_ckpt( | |
local_model_path, | |
num_in_channels=4 if is_native_control_inpaint else 9, | |
from_safetensors=local_model_path.endswith("safetensors"), | |
device="cpu", | |
load_safety_checker=False, | |
) | |
except Exception as e: | |
err_msg = str(e) | |
logger.exception(e) | |
if is_native_control_inpaint and "[320, 9, 3, 3]" in err_msg: | |
logger.error( | |
"control_v11p_sd15_inpaint method requires normal SD model, not inpainting SD model" | |
) | |
if not is_native_control_inpaint and "[320, 4, 3, 3]" in err_msg: | |
logger.error( | |
f"{controlnet.config['_name_or_path']} method requires inpainting SD model, " | |
f"you can convert any SD model to inpainting model in AUTO1111: \n" | |
f"https://www.reddit.com/r/StableDiffusion/comments/zyi24j/how_to_turn_any_model_into_an_inpainting_model/" | |
) | |
exit(-1) | |
inpaint_pipe = pipe_class( | |
vae=pipe.vae, | |
text_encoder=pipe.text_encoder, | |
tokenizer=pipe.tokenizer, | |
unet=pipe.unet, | |
controlnet=controlnet, | |
scheduler=pipe.scheduler, | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False, | |
) | |
del pipe | |
gc.collect() | |
return inpaint_pipe.to(torch_dtype=torch_dtype) | |
class ControlNet(DiffusionInpaintModel): | |
name = "controlnet" | |
pad_mod = 8 | |
min_size = 512 | |
def init_model(self, device: torch.device, **kwargs): | |
fp16 = not kwargs.get("no_half", False) | |
model_kwargs = { | |
"local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"]) | |
} | |
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): | |
logger.info("Disable Stable Diffusion Model NSFW checker") | |
model_kwargs.update( | |
dict( | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False, | |
) | |
) | |
use_gpu = device == torch.device("cuda") and torch.cuda.is_available() | |
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 | |
sd_controlnet_method = kwargs["sd_controlnet_method"] | |
self.sd_controlnet_method = sd_controlnet_method | |
if sd_controlnet_method == "control_v11p_sd15_inpaint": | |
from diffusers import StableDiffusionControlNetPipeline as PipeClass | |
self.is_native_control_inpaint = True | |
else: | |
from .pipeline import StableDiffusionControlNetInpaintPipeline as PipeClass | |
self.is_native_control_inpaint = False | |
if self.is_native_control_inpaint: | |
model_id = NATIVE_NAMES_MAP[kwargs["name"]] | |
else: | |
model_id = NAMES_MAP[kwargs["name"]] | |
controlnet = ControlNetModel.from_pretrained( | |
f"lllyasviel/{sd_controlnet_method}", torch_dtype=torch_dtype | |
) | |
self.is_local_sd_model = False | |
if kwargs.get("sd_local_model_path", None): | |
self.is_local_sd_model = True | |
self.model = load_from_local_model( | |
kwargs["sd_local_model_path"], | |
torch_dtype=torch_dtype, | |
controlnet=controlnet, | |
pipe_class=PipeClass, | |
is_native_control_inpaint=self.is_native_control_inpaint, | |
) | |
else: | |
self.model = PipeClass.from_pretrained( | |
model_id, | |
controlnet=controlnet, | |
revision="fp16" if use_gpu and fp16 else "main", | |
torch_dtype=torch_dtype, | |
**model_kwargs, | |
) | |
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing | |
self.model.enable_attention_slicing() | |
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention | |
if kwargs.get("enable_xformers", False): | |
self.model.enable_xformers_memory_efficient_attention() | |
if kwargs.get("cpu_offload", False) and use_gpu: | |
logger.info("Enable sequential cpu offload") | |
self.model.enable_sequential_cpu_offload(gpu_id=0) | |
else: | |
self.model = self.model.to(device) | |
if kwargs["sd_cpu_textencoder"]: | |
logger.info("Run Stable Diffusion TextEncoder on CPU") | |
self.model.text_encoder = CPUTextEncoderWrapper( | |
self.model.text_encoder, torch_dtype | |
) | |
self.callback = kwargs.pop("callback", None) | |
def forward(self, image, mask, config: Config): | |
"""Input image and output image have same size | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
return: BGR IMAGE | |
""" | |
scheduler_config = self.model.scheduler.config | |
scheduler = get_scheduler(config.sd_sampler, scheduler_config) | |
self.model.scheduler = scheduler | |
if config.sd_mask_blur != 0: | |
k = 2 * config.sd_mask_blur + 1 | |
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] | |
img_h, img_w = image.shape[:2] | |
if self.is_native_control_inpaint: | |
control_image = make_inpaint_condition(image, mask) | |
output = self.model( | |
prompt=config.prompt, | |
image=control_image, | |
height=img_h, | |
width=img_w, | |
num_inference_steps=config.sd_steps, | |
guidance_scale=config.sd_guidance_scale, | |
controlnet_conditioning_scale=config.controlnet_conditioning_scale, | |
negative_prompt=config.negative_prompt, | |
generator=torch.manual_seed(config.sd_seed), | |
output_type="np.array", | |
callback=self.callback, | |
).images[0] | |
else: | |
if "canny" in self.sd_controlnet_method: | |
canny_image = cv2.Canny(image, 100, 200) | |
canny_image = canny_image[:, :, None] | |
canny_image = np.concatenate( | |
[canny_image, canny_image, canny_image], axis=2 | |
) | |
canny_image = PIL.Image.fromarray(canny_image) | |
control_image = canny_image | |
elif "openpose" in self.sd_controlnet_method: | |
from controlnet_aux import OpenposeDetector | |
processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
control_image = processor(image, hand_and_face=True) | |
elif "depth" in self.sd_controlnet_method: | |
from transformers import pipeline | |
depth_estimator = pipeline("depth-estimation") | |
depth_image = depth_estimator(PIL.Image.fromarray(image))["depth"] | |
depth_image = np.array(depth_image) | |
depth_image = depth_image[:, :, None] | |
depth_image = np.concatenate( | |
[depth_image, depth_image, depth_image], axis=2 | |
) | |
control_image = PIL.Image.fromarray(depth_image) | |
else: | |
raise NotImplementedError( | |
f"{self.sd_controlnet_method} not implemented" | |
) | |
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L") | |
image = PIL.Image.fromarray(image) | |
output = self.model( | |
image=image, | |
control_image=control_image, | |
prompt=config.prompt, | |
negative_prompt=config.negative_prompt, | |
mask_image=mask_image, | |
num_inference_steps=config.sd_steps, | |
guidance_scale=config.sd_guidance_scale, | |
output_type="np.array", | |
callback=self.callback, | |
height=img_h, | |
width=img_w, | |
generator=torch.manual_seed(config.sd_seed), | |
controlnet_conditioning_scale=config.controlnet_conditioning_scale, | |
).images[0] | |
output = (output * 255).round().astype("uint8") | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |
def forward_post_process(self, result, image, mask, config): | |
if config.sd_match_histograms: | |
result = self._match_histograms(result, image[:, :, ::-1], mask) | |
if config.sd_mask_blur != 0: | |
k = 2 * config.sd_mask_blur + 1 | |
mask = cv2.GaussianBlur(mask, (k, k), 0) | |
return result, image, mask | |
def is_downloaded() -> bool: | |
# model will be downloaded when app start, and can't switch in frontend settings | |
return True | |