Spaces:
Runtime error
Runtime error
import argparse | |
# import math | |
import gc | |
import os | |
import platform | |
if platform.system() == "Darwin": | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
if platform.system() == "Windows": | |
os.environ["XFORMERS_FORCE_DISABLE_TRITON"] = "1" | |
import random | |
import traceback | |
from importlib.util import find_spec | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import (DDIMScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, | |
KDPM2AncestralDiscreteScheduler, KDPM2DiscreteScheduler, | |
StableDiffusionInpaintPipeline) | |
from PIL import Image, ImageFilter | |
from PIL.PngImagePlugin import PngInfo | |
from torch.hub import download_url_to_file | |
from torchvision import transforms | |
import inpalib | |
from ia_check_versions import ia_check_versions | |
from ia_config import IAConfig, get_ia_config_index, set_ia_config, setup_ia_config_ini | |
from ia_devices import devices | |
from ia_file_manager import IAFileManager, download_model_from_hf, ia_file_manager | |
from ia_logging import ia_logging | |
from ia_threading import clear_cache_decorator | |
from ia_ui_gradio import reload_javascript | |
from ia_ui_items import (get_cleaner_model_ids, get_inp_model_ids, get_padding_mode_names, | |
get_sam_model_ids, get_sampler_names) | |
from lama_cleaner.model_manager import ModelManager | |
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler | |
print("platform:", platform.system()) | |
reload_javascript() | |
if find_spec("xformers") is not None: | |
xformers_available = True | |
else: | |
xformers_available = False | |
parser = argparse.ArgumentParser(description="Inpaint Anything") | |
parser.add_argument("--save-seg", action="store_true", help="Save the segmentation image generated by SAM.") | |
parser.add_argument("--offline", action="store_true", help="Execute inpainting using an offline network.") | |
parser.add_argument("--sam-cpu", action="store_true", help="Perform the Segment Anything operation on CPU.") | |
args = parser.parse_args() | |
IAConfig.global_args.update(args.__dict__) | |
def download_model(sam_model_id): | |
"""Download SAM model. | |
Args: | |
sam_model_id (str): SAM model id | |
Returns: | |
str: download status | |
""" | |
if "_hq_" in sam_model_id: | |
url_sam = "https://huggingface.co/Uminosachi/sam-hq/resolve/main/" + sam_model_id | |
elif "FastSAM" in sam_model_id: | |
url_sam = "https://huggingface.co/Uminosachi/FastSAM/resolve/main/" + sam_model_id | |
elif "mobile_sam" in sam_model_id: | |
url_sam = "https://huggingface.co/Uminosachi/MobileSAM/resolve/main/" + sam_model_id | |
elif "sam2_" in sam_model_id: | |
url_sam = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/" + sam_model_id | |
else: | |
url_sam = "https://dl.fbaipublicfiles.com/segment_anything/" + sam_model_id | |
sam_checkpoint = os.path.join(ia_file_manager.models_dir, sam_model_id) | |
if not os.path.isfile(sam_checkpoint): | |
try: | |
download_url_to_file(url_sam, sam_checkpoint) | |
except Exception as e: | |
ia_logging.error(str(e)) | |
return str(e) | |
return IAFileManager.DOWNLOAD_COMPLETE | |
else: | |
return "Model already exists" | |
sam_dict = dict(sam_masks=None, mask_image=None, cnet=None, orig_image=None, pad_mask=None) | |
def save_mask_image(mask_image, save_mask_chk=False): | |
"""Save mask image. | |
Args: | |
mask_image (np.ndarray): mask image | |
save_mask_chk (bool, optional): If True, save mask image. Defaults to False. | |
Returns: | |
None | |
""" | |
if save_mask_chk: | |
save_name = "_".join([ia_file_manager.savename_prefix, "created_mask"]) + ".png" | |
save_name = os.path.join(ia_file_manager.outputs_dir, save_name) | |
Image.fromarray(mask_image).save(save_name) | |
def input_image_upload(input_image, sam_image, sel_mask): | |
global sam_dict | |
sam_dict["orig_image"] = input_image | |
sam_dict["pad_mask"] = None | |
if (sam_dict["mask_image"] is None or not isinstance(sam_dict["mask_image"], np.ndarray) or | |
sam_dict["mask_image"].shape != input_image.shape): | |
sam_dict["mask_image"] = np.zeros_like(input_image, dtype=np.uint8) | |
ret_sel_image = cv2.addWeighted(input_image, 0.5, sam_dict["mask_image"], 0.5, 0) | |
if sam_image is None or not isinstance(sam_image, dict) or "image" not in sam_image: | |
sam_dict["sam_masks"] = None | |
ret_sam_image = np.zeros_like(input_image, dtype=np.uint8) | |
elif sam_image["image"].shape == input_image.shape: | |
ret_sam_image = gr.update() | |
else: | |
sam_dict["sam_masks"] = None | |
ret_sam_image = gr.update(value=np.zeros_like(input_image, dtype=np.uint8)) | |
if sel_mask is None or not isinstance(sel_mask, dict) or "image" not in sel_mask: | |
ret_sel_mask = ret_sel_image | |
elif sel_mask["image"].shape == ret_sel_image.shape and np.all(sel_mask["image"] == ret_sel_image): | |
ret_sel_mask = gr.update() | |
else: | |
ret_sel_mask = gr.update(value=ret_sel_image) | |
return ret_sam_image, ret_sel_mask, gr.update(interactive=True) | |
def run_padding(input_image, pad_scale_width, pad_scale_height, pad_lr_barance, pad_tb_barance, padding_mode="edge"): | |
global sam_dict | |
if input_image is None or sam_dict["orig_image"] is None: | |
sam_dict["orig_image"] = None | |
sam_dict["pad_mask"] = None | |
return None, "Input image not found" | |
orig_image = sam_dict["orig_image"] | |
height, width = orig_image.shape[:2] | |
pad_width, pad_height = (int(width * pad_scale_width), int(height * pad_scale_height)) | |
ia_logging.info(f"resize by padding: ({height}, {width}) -> ({pad_height}, {pad_width})") | |
pad_size_w, pad_size_h = (pad_width - width, pad_height - height) | |
pad_size_l = int(pad_size_w * pad_lr_barance) | |
pad_size_r = pad_size_w - pad_size_l | |
pad_size_t = int(pad_size_h * pad_tb_barance) | |
pad_size_b = pad_size_h - pad_size_t | |
pad_width = [(pad_size_t, pad_size_b), (pad_size_l, pad_size_r), (0, 0)] | |
if padding_mode == "constant": | |
fill_value = 127 | |
pad_image = np.pad(orig_image, pad_width=pad_width, mode=padding_mode, constant_values=fill_value) | |
else: | |
pad_image = np.pad(orig_image, pad_width=pad_width, mode=padding_mode) | |
mask_pad_width = [(pad_size_t, pad_size_b), (pad_size_l, pad_size_r)] | |
pad_mask = np.zeros((height, width), dtype=np.uint8) | |
pad_mask = np.pad(pad_mask, pad_width=mask_pad_width, mode="constant", constant_values=255) | |
sam_dict["pad_mask"] = dict(segmentation=pad_mask.astype(bool)) | |
return pad_image, "Padding done" | |
def run_sam(input_image, sam_model_id, sam_image, anime_style_chk=False): | |
global sam_dict | |
if not inpalib.sam_file_exists(sam_model_id): | |
ret_sam_image = None if sam_image is None else gr.update() | |
return ret_sam_image, f"{sam_model_id} not found, please download" | |
if input_image is None: | |
ret_sam_image = None if sam_image is None else gr.update() | |
return ret_sam_image, "Input image not found" | |
set_ia_config(IAConfig.KEYS.SAM_MODEL_ID, sam_model_id, IAConfig.SECTIONS.USER) | |
if sam_dict["sam_masks"] is not None: | |
sam_dict["sam_masks"] = None | |
gc.collect() | |
ia_logging.info(f"input_image: {input_image.shape} {input_image.dtype}") | |
try: | |
sam_masks = inpalib.generate_sam_masks(input_image, sam_model_id, anime_style_chk) | |
sam_masks = inpalib.sort_masks_by_area(sam_masks) | |
sam_masks = inpalib.insert_mask_to_sam_masks(sam_masks, sam_dict["pad_mask"]) | |
seg_image = inpalib.create_seg_color_image(input_image, sam_masks) | |
sam_dict["sam_masks"] = sam_masks | |
except Exception as e: | |
print(traceback.format_exc()) | |
ia_logging.error(str(e)) | |
ret_sam_image = None if sam_image is None else gr.update() | |
return ret_sam_image, "Segment Anything failed" | |
if IAConfig.global_args.get("save_seg", False): | |
save_name = "_".join([ia_file_manager.savename_prefix, os.path.splitext(sam_model_id)[0]]) + ".png" | |
save_name = os.path.join(ia_file_manager.outputs_dir, save_name) | |
Image.fromarray(seg_image).save(save_name) | |
if sam_image is None: | |
return seg_image, "Segment Anything complete" | |
else: | |
if sam_image["image"].shape == seg_image.shape and np.all(sam_image["image"] == seg_image): | |
return gr.update(), "Segment Anything complete" | |
else: | |
return gr.update(value=seg_image), "Segment Anything complete" | |
def select_mask(input_image, sam_image, invert_chk, ignore_black_chk, sel_mask): | |
global sam_dict | |
if sam_dict["sam_masks"] is None or sam_image is None: | |
ret_sel_mask = None if sel_mask is None else gr.update() | |
return ret_sel_mask | |
sam_masks = sam_dict["sam_masks"] | |
# image = sam_image["image"] | |
mask = sam_image["mask"][:, :, 0:1] | |
try: | |
seg_image = inpalib.create_mask_image(mask, sam_masks, ignore_black_chk) | |
if invert_chk: | |
seg_image = inpalib.invert_mask(seg_image) | |
sam_dict["mask_image"] = seg_image | |
except Exception as e: | |
print(traceback.format_exc()) | |
ia_logging.error(str(e)) | |
ret_sel_mask = None if sel_mask is None else gr.update() | |
return ret_sel_mask | |
if input_image is not None and input_image.shape == seg_image.shape: | |
ret_image = cv2.addWeighted(input_image, 0.5, seg_image, 0.5, 0) | |
else: | |
ret_image = seg_image | |
if sel_mask is None: | |
return ret_image | |
else: | |
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image): | |
return gr.update() | |
else: | |
return gr.update(value=ret_image) | |
def expand_mask(input_image, sel_mask, expand_iteration=1): | |
global sam_dict | |
if sam_dict["mask_image"] is None or sel_mask is None: | |
return None | |
new_sel_mask = sam_dict["mask_image"] | |
expand_iteration = int(np.clip(expand_iteration, 1, 100)) | |
new_sel_mask = cv2.dilate(new_sel_mask, np.ones((3, 3), dtype=np.uint8), iterations=expand_iteration) | |
sam_dict["mask_image"] = new_sel_mask | |
if input_image is not None and input_image.shape == new_sel_mask.shape: | |
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0) | |
else: | |
ret_image = new_sel_mask | |
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image): | |
return gr.update() | |
else: | |
return gr.update(value=ret_image) | |
def apply_mask(input_image, sel_mask): | |
global sam_dict | |
if sam_dict["mask_image"] is None or sel_mask is None: | |
return None | |
sel_mask_image = sam_dict["mask_image"] | |
sel_mask_mask = np.logical_not(sel_mask["mask"][:, :, 0:3].astype(bool)).astype(np.uint8) | |
new_sel_mask = sel_mask_image * sel_mask_mask | |
sam_dict["mask_image"] = new_sel_mask | |
if input_image is not None and input_image.shape == new_sel_mask.shape: | |
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0) | |
else: | |
ret_image = new_sel_mask | |
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image): | |
return gr.update() | |
else: | |
return gr.update(value=ret_image) | |
def add_mask(input_image, sel_mask): | |
global sam_dict | |
if sam_dict["mask_image"] is None or sel_mask is None: | |
return None | |
sel_mask_image = sam_dict["mask_image"] | |
sel_mask_mask = sel_mask["mask"][:, :, 0:3].astype(bool).astype(np.uint8) | |
new_sel_mask = sel_mask_image + (sel_mask_mask * np.invert(sel_mask_image, dtype=np.uint8)) | |
sam_dict["mask_image"] = new_sel_mask | |
if input_image is not None and input_image.shape == new_sel_mask.shape: | |
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0) | |
else: | |
ret_image = new_sel_mask | |
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image): | |
return gr.update() | |
else: | |
return gr.update(value=ret_image) | |
def auto_resize_to_pil(input_image, mask_image): | |
init_image = Image.fromarray(input_image).convert("RGB") | |
mask_image = Image.fromarray(mask_image).convert("RGB") | |
assert init_image.size == mask_image.size, "The sizes of the image and mask do not match" | |
width, height = init_image.size | |
new_height = (height // 8) * 8 | |
new_width = (width // 8) * 8 | |
if new_width < width or new_height < height: | |
if (new_width / width) < (new_height / height): | |
scale = new_height / height | |
else: | |
scale = new_width / width | |
resize_height = int(height*scale+0.5) | |
resize_width = int(width*scale+0.5) | |
if height != resize_height or width != resize_width: | |
ia_logging.info(f"resize: ({height}, {width}) -> ({resize_height}, {resize_width})") | |
init_image = transforms.functional.resize(init_image, (resize_height, resize_width), transforms.InterpolationMode.LANCZOS) | |
mask_image = transforms.functional.resize(mask_image, (resize_height, resize_width), transforms.InterpolationMode.LANCZOS) | |
if resize_height != new_height or resize_width != new_width: | |
ia_logging.info(f"center_crop: ({resize_height}, {resize_width}) -> ({new_height}, {new_width})") | |
init_image = transforms.functional.center_crop(init_image, (new_height, new_width)) | |
mask_image = transforms.functional.center_crop(mask_image, (new_height, new_width)) | |
return init_image, mask_image | |
def run_inpaint(input_image, sel_mask, prompt, n_prompt, ddim_steps, cfg_scale, seed, inp_model_id, save_mask_chk, composite_chk, | |
sampler_name="DDIM", iteration_count=1): | |
global sam_dict | |
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None: | |
ia_logging.error("The image or mask does not exist") | |
return | |
mask_image = sam_dict["mask_image"] | |
if input_image.shape != mask_image.shape: | |
ia_logging.error("The sizes of the image and mask do not match") | |
return | |
set_ia_config(IAConfig.KEYS.INP_MODEL_ID, inp_model_id, IAConfig.SECTIONS.USER) | |
save_mask_image(mask_image, save_mask_chk) | |
ia_logging.info(f"Loading model {inp_model_id}") | |
config_offline_inpainting = IAConfig.global_args.get("offline", False) | |
if config_offline_inpainting: | |
ia_logging.info("Run Inpainting on offline network: {}".format(str(config_offline_inpainting))) | |
local_files_only = False | |
local_file_status = download_model_from_hf(inp_model_id, local_files_only=True) | |
if local_file_status != IAFileManager.DOWNLOAD_COMPLETE: | |
if config_offline_inpainting: | |
ia_logging.warning(local_file_status) | |
return | |
else: | |
local_files_only = True | |
ia_logging.info("local_files_only: {}".format(str(local_files_only))) | |
if platform.system() == "Darwin" or devices.device == devices.cpu or ia_check_versions.torch_on_amd_rocm: | |
torch_dtype = torch.float32 | |
else: | |
torch_dtype = torch.float16 | |
try: | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
inp_model_id, torch_dtype=torch_dtype, local_files_only=local_files_only, use_safetensors=True) | |
except Exception as e: | |
ia_logging.error(str(e)) | |
if not config_offline_inpainting: | |
try: | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
inp_model_id, torch_dtype=torch_dtype, use_safetensors=True) | |
except Exception as e: | |
ia_logging.error(str(e)) | |
try: | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
inp_model_id, torch_dtype=torch_dtype, force_download=True, use_safetensors=True) | |
except Exception as e: | |
ia_logging.error(str(e)) | |
return | |
else: | |
return | |
pipe.safety_checker = None | |
ia_logging.info(f"Using sampler {sampler_name}") | |
if sampler_name == "DDIM": | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "Euler": | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "Euler a": | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "DPM2 Karras": | |
pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config) | |
elif sampler_name == "DPM2 a Karras": | |
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
else: | |
ia_logging.info("Sampler fallback to DDIM") | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
if platform.system() == "Darwin": | |
pipe = pipe.to("mps" if ia_check_versions.torch_mps_is_available else "cpu") | |
pipe.enable_attention_slicing() | |
torch_generator = torch.Generator(devices.cpu) | |
else: | |
if ia_check_versions.diffusers_enable_cpu_offload and devices.device != devices.cpu: | |
ia_logging.info("Enable model cpu offload") | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe = pipe.to(devices.device) | |
if xformers_available: | |
ia_logging.info("Enable xformers memory efficient attention") | |
pipe.enable_xformers_memory_efficient_attention() | |
else: | |
ia_logging.info("Enable attention slicing") | |
pipe.enable_attention_slicing() | |
if "privateuseone" in str(getattr(devices.device, "type", "")): | |
torch_generator = torch.Generator(devices.cpu) | |
else: | |
torch_generator = torch.Generator(devices.device) | |
init_image, mask_image = auto_resize_to_pil(input_image, mask_image) | |
width, height = init_image.size | |
output_list = [] | |
iteration_count = iteration_count if iteration_count is not None else 1 | |
for count in range(int(iteration_count)): | |
gc.collect() | |
if seed < 0 or count > 0: | |
seed = random.randint(0, 2147483647) | |
generator = torch_generator.manual_seed(seed) | |
pipe_args_dict = { | |
"prompt": prompt, | |
"image": init_image, | |
"width": width, | |
"height": height, | |
"mask_image": mask_image, | |
"num_inference_steps": ddim_steps, | |
"guidance_scale": cfg_scale, | |
"negative_prompt": n_prompt, | |
"generator": generator, | |
} | |
output_image = pipe(**pipe_args_dict).images[0] | |
if composite_chk: | |
dilate_mask_image = Image.fromarray(cv2.dilate(np.array(mask_image), np.ones((3, 3), dtype=np.uint8), iterations=4)) | |
output_image = Image.composite(output_image, init_image, dilate_mask_image.convert("L").filter(ImageFilter.GaussianBlur(3))) | |
generation_params = { | |
"Steps": ddim_steps, | |
"Sampler": sampler_name, | |
"CFG scale": cfg_scale, | |
"Seed": seed, | |
"Size": f"{width}x{height}", | |
"Model": inp_model_id, | |
} | |
generation_params_text = ", ".join([k if k == v else f"{k}: {v}" for k, v in generation_params.items() if v is not None]) | |
prompt_text = prompt if prompt else "" | |
negative_prompt_text = "\nNegative prompt: " + n_prompt if n_prompt else "" | |
infotext = f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip() | |
metadata = PngInfo() | |
metadata.add_text("parameters", infotext) | |
save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(inp_model_id), str(seed)]) + ".png" | |
save_name = os.path.join(ia_file_manager.outputs_dir, save_name) | |
output_image.save(save_name, pnginfo=metadata) | |
output_list.append(output_image) | |
yield output_list, max([1, iteration_count - (count + 1)]) | |
def run_cleaner(input_image, sel_mask, cleaner_model_id, cleaner_save_mask_chk): | |
global sam_dict | |
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None: | |
ia_logging.error("The image or mask does not exist") | |
return None | |
mask_image = sam_dict["mask_image"] | |
if input_image.shape != mask_image.shape: | |
ia_logging.error("The sizes of the image and mask do not match") | |
return None | |
save_mask_image(mask_image, cleaner_save_mask_chk) | |
ia_logging.info(f"Loading model {cleaner_model_id}") | |
if platform.system() == "Darwin": | |
model = ModelManager(name=cleaner_model_id, device=devices.cpu) | |
else: | |
model = ModelManager(name=cleaner_model_id, device=devices.device) | |
init_image, mask_image = auto_resize_to_pil(input_image, mask_image) | |
width, height = init_image.size | |
init_image = np.array(init_image) | |
mask_image = np.array(mask_image.convert("L")) | |
config = Config( | |
ldm_steps=20, | |
ldm_sampler=LDMSampler.ddim, | |
hd_strategy=HDStrategy.ORIGINAL, | |
hd_strategy_crop_margin=32, | |
hd_strategy_crop_trigger_size=512, | |
hd_strategy_resize_limit=512, | |
prompt="", | |
sd_steps=20, | |
sd_sampler=SDSampler.ddim | |
) | |
output_image = model(image=init_image, mask=mask_image, config=config) | |
output_image = cv2.cvtColor(output_image.astype(np.uint8), cv2.COLOR_BGR2RGB) | |
output_image = Image.fromarray(output_image) | |
save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(cleaner_model_id)]) + ".png" | |
save_name = os.path.join(ia_file_manager.outputs_dir, save_name) | |
output_image.save(save_name) | |
del model | |
return [output_image] | |
def run_get_alpha_image(input_image, sel_mask): | |
global sam_dict | |
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None: | |
ia_logging.error("The image or mask does not exist") | |
return None, "" | |
mask_image = sam_dict["mask_image"] | |
if input_image.shape != mask_image.shape: | |
ia_logging.error("The sizes of the image and mask do not match") | |
return None, "" | |
alpha_image = Image.fromarray(input_image).convert("RGBA") | |
mask_image = Image.fromarray(mask_image).convert("L") | |
alpha_image.putalpha(mask_image) | |
save_name = "_".join([ia_file_manager.savename_prefix, "rgba_image"]) + ".png" | |
save_name = os.path.join(ia_file_manager.outputs_dir, save_name) | |
alpha_image.save(save_name) | |
return alpha_image, f"saved: {save_name}" | |
def run_get_mask(sel_mask): | |
global sam_dict | |
if sam_dict["mask_image"] is None or sel_mask is None: | |
return None | |
mask_image = sam_dict["mask_image"] | |
save_name = "_".join([ia_file_manager.savename_prefix, "created_mask"]) + ".png" | |
save_name = os.path.join(ia_file_manager.outputs_dir, save_name) | |
Image.fromarray(mask_image).save(save_name) | |
return mask_image | |
def on_ui_tabs(): | |
setup_ia_config_ini() | |
sampler_names = get_sampler_names() | |
sam_model_ids = get_sam_model_ids() | |
sam_model_index = get_ia_config_index(IAConfig.KEYS.SAM_MODEL_ID, IAConfig.SECTIONS.USER) | |
inp_model_ids = get_inp_model_ids() | |
inp_model_index = get_ia_config_index(IAConfig.KEYS.INP_MODEL_ID, IAConfig.SECTIONS.USER) | |
cleaner_model_ids = get_cleaner_model_ids() | |
padding_mode_names = get_padding_mode_names() | |
out_gallery_kwargs = dict(columns=2, height=520, object_fit="contain", preview=True) | |
block = gr.Blocks(analytics_enabled=False).queue() | |
block.title = "Inpaint Anything" | |
with block as inpaint_anything_interface: | |
with gr.Row(): | |
gr.Markdown("## Inpainting with Segment Anything") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
sam_model_id = gr.Dropdown(label="Segment Anything Model ID", elem_id="sam_model_id", choices=sam_model_ids, | |
value=sam_model_ids[sam_model_index], show_label=True) | |
with gr.Column(): | |
with gr.Row(): | |
load_model_btn = gr.Button("Download model", elem_id="load_model_btn") | |
with gr.Row(): | |
status_text = gr.Textbox(label="", elem_id="status_text", max_lines=1, show_label=False, interactive=False) | |
with gr.Row(): | |
input_image = gr.Image(label="Input image", elem_id="ia_input_image", source="upload", type="numpy", interactive=True) | |
with gr.Row(): | |
with gr.Accordion("Padding options", elem_id="padding_options", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
pad_scale_width = gr.Slider(label="Scale Width", elem_id="pad_scale_width", minimum=1.0, maximum=1.5, value=1.0, step=0.01) | |
with gr.Column(): | |
pad_lr_barance = gr.Slider(label="Left/Right Balance", elem_id="pad_lr_barance", minimum=0.0, maximum=1.0, value=0.5, step=0.01) | |
with gr.Row(): | |
with gr.Column(): | |
pad_scale_height = gr.Slider(label="Scale Height", elem_id="pad_scale_height", minimum=1.0, maximum=1.5, value=1.0, step=0.01) | |
with gr.Column(): | |
pad_tb_barance = gr.Slider(label="Top/Bottom Balance", elem_id="pad_tb_barance", minimum=0.0, maximum=1.0, value=0.5, step=0.01) | |
with gr.Row(): | |
with gr.Column(): | |
padding_mode = gr.Dropdown(label="Padding Mode", elem_id="padding_mode", choices=padding_mode_names, value="edge") | |
with gr.Column(): | |
padding_btn = gr.Button("Run Padding", elem_id="padding_btn") | |
with gr.Row(): | |
with gr.Column(): | |
anime_style_chk = gr.Checkbox(label="Anime Style (Up Detection, Down mask Quality)", elem_id="anime_style_chk", | |
show_label=True, interactive=True) | |
with gr.Column(): | |
sam_btn = gr.Button("Run Segment Anything", elem_id="sam_btn", variant="primary", interactive=False) | |
with gr.Tab("Inpainting", elem_id="inpainting_tab"): | |
prompt = gr.Textbox(label="Inpainting Prompt", elem_id="sd_prompt") | |
n_prompt = gr.Textbox(label="Negative Prompt", elem_id="sd_n_prompt") | |
with gr.Accordion("Advanced options", elem_id="inp_advanced_options", open=False): | |
composite_chk = gr.Checkbox(label="Mask area Only", elem_id="composite_chk", value=True, show_label=True, interactive=True) | |
with gr.Row(): | |
with gr.Column(): | |
sampler_name = gr.Dropdown(label="Sampler", elem_id="sampler_name", choices=sampler_names, | |
value=sampler_names[0], show_label=True) | |
with gr.Column(): | |
ddim_steps = gr.Slider(label="Sampling Steps", elem_id="ddim_steps", minimum=1, maximum=100, value=20, step=1) | |
cfg_scale = gr.Slider(label="Guidance Scale", elem_id="cfg_scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1) | |
seed = gr.Slider( | |
label="Seed", | |
elem_id="sd_seed", | |
minimum=-1, | |
maximum=2147483647, | |
step=1, | |
value=-1, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
inp_model_id = gr.Dropdown(label="Inpainting Model ID", elem_id="inp_model_id", | |
choices=inp_model_ids, value=inp_model_ids[inp_model_index], show_label=True) | |
with gr.Column(): | |
with gr.Row(): | |
inpaint_btn = gr.Button("Run Inpainting", elem_id="inpaint_btn", variant="primary") | |
with gr.Row(): | |
save_mask_chk = gr.Checkbox(label="Save mask", elem_id="save_mask_chk", | |
value=False, show_label=False, interactive=False, visible=False) | |
iteration_count = gr.Slider(label="Iterations", elem_id="iteration_count", minimum=1, maximum=10, value=1, step=1) | |
with gr.Row(): | |
if ia_check_versions.gradio_version_is_old: | |
out_image = gr.Gallery(label="Inpainted image", elem_id="ia_out_image", show_label=False | |
).style(**out_gallery_kwargs) | |
else: | |
out_image = gr.Gallery(label="Inpainted image", elem_id="ia_out_image", show_label=False, | |
**out_gallery_kwargs) | |
with gr.Tab("Cleaner", elem_id="cleaner_tab"): | |
with gr.Row(): | |
with gr.Column(): | |
cleaner_model_id = gr.Dropdown(label="Cleaner Model ID", elem_id="cleaner_model_id", | |
choices=cleaner_model_ids, value=cleaner_model_ids[0], show_label=True) | |
with gr.Column(): | |
with gr.Row(): | |
cleaner_btn = gr.Button("Run Cleaner", elem_id="cleaner_btn", variant="primary") | |
with gr.Row(): | |
cleaner_save_mask_chk = gr.Checkbox(label="Save mask", elem_id="cleaner_save_mask_chk", | |
value=False, show_label=False, interactive=False, visible=False) | |
with gr.Row(): | |
if ia_check_versions.gradio_version_is_old: | |
cleaner_out_image = gr.Gallery(label="Cleaned image", elem_id="ia_cleaner_out_image", show_label=False | |
).style(**out_gallery_kwargs) | |
else: | |
cleaner_out_image = gr.Gallery(label="Cleaned image", elem_id="ia_cleaner_out_image", show_label=False, | |
**out_gallery_kwargs) | |
with gr.Tab("Mask only", elem_id="mask_only_tab"): | |
with gr.Row(): | |
with gr.Column(): | |
get_alpha_image_btn = gr.Button("Get mask as alpha of image", elem_id="get_alpha_image_btn") | |
with gr.Column(): | |
get_mask_btn = gr.Button("Get mask", elem_id="get_mask_btn") | |
with gr.Row(): | |
with gr.Column(): | |
alpha_out_image = gr.Image(label="Alpha channel image", elem_id="alpha_out_image", type="pil", image_mode="RGBA", interactive=False) | |
with gr.Column(): | |
mask_out_image = gr.Image(label="Mask image", elem_id="mask_out_image", type="numpy", interactive=False) | |
with gr.Row(): | |
with gr.Column(): | |
get_alpha_status_text = gr.Textbox(label="", elem_id="get_alpha_status_text", max_lines=1, show_label=False, interactive=False) | |
with gr.Column(): | |
gr.Markdown("") | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown("Mouse over image: Press `S` key for Fullscreen mode, `R` key to Reset zoom") | |
with gr.Row(): | |
if ia_check_versions.gradio_version_is_old: | |
sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8, | |
show_label=False, interactive=True).style(height=480) | |
else: | |
sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8, | |
show_label=False, interactive=True, height=480) | |
with gr.Row(): | |
with gr.Column(): | |
select_btn = gr.Button("Create Mask", elem_id="select_btn", variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
invert_chk = gr.Checkbox(label="Invert mask", elem_id="invert_chk", show_label=True, interactive=True) | |
ignore_black_chk = gr.Checkbox(label="Ignore black area", elem_id="ignore_black_chk", value=True, show_label=True, interactive=True) | |
with gr.Row(): | |
if ia_check_versions.gradio_version_is_old: | |
sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12, | |
show_label=False, interactive=True).style(height=480) | |
else: | |
sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12, | |
show_label=False, interactive=True, height=480) | |
with gr.Row(): | |
with gr.Column(): | |
expand_mask_btn = gr.Button("Expand mask region", elem_id="expand_mask_btn") | |
expand_mask_iteration_count = gr.Slider(label="Expand Mask Iterations", | |
elem_id="expand_mask_iteration_count", minimum=1, maximum=100, value=1, step=1) | |
with gr.Column(): | |
apply_mask_btn = gr.Button("Trim mask by sketch", elem_id="apply_mask_btn") | |
add_mask_btn = gr.Button("Add mask by sketch", elem_id="add_mask_btn") | |
load_model_btn.click(download_model, inputs=[sam_model_id], outputs=[status_text]) | |
input_image.upload(input_image_upload, inputs=[input_image, sam_image, sel_mask], outputs=[sam_image, sel_mask, sam_btn]).then( | |
fn=None, inputs=None, outputs=None, _js="inpaintAnything_initSamSelMask") | |
padding_btn.click(run_padding, inputs=[input_image, pad_scale_width, pad_scale_height, pad_lr_barance, pad_tb_barance, padding_mode], | |
outputs=[input_image, status_text]) | |
sam_btn.click(run_sam, inputs=[input_image, sam_model_id, sam_image, anime_style_chk], outputs=[sam_image, status_text]).then( | |
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSamMask") | |
select_btn.click(select_mask, inputs=[input_image, sam_image, invert_chk, ignore_black_chk, sel_mask], outputs=[sel_mask]).then( | |
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask") | |
expand_mask_btn.click(expand_mask, inputs=[input_image, sel_mask, expand_mask_iteration_count], outputs=[sel_mask]).then( | |
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask") | |
apply_mask_btn.click(apply_mask, inputs=[input_image, sel_mask], outputs=[sel_mask]).then( | |
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask") | |
add_mask_btn.click(add_mask, inputs=[input_image, sel_mask], outputs=[sel_mask]).then( | |
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask") | |
inpaint_btn.click( | |
run_inpaint, | |
inputs=[input_image, sel_mask, prompt, n_prompt, ddim_steps, cfg_scale, seed, inp_model_id, save_mask_chk, composite_chk, | |
sampler_name, iteration_count], | |
outputs=[out_image, iteration_count]) | |
cleaner_btn.click( | |
run_cleaner, | |
inputs=[input_image, sel_mask, cleaner_model_id, cleaner_save_mask_chk], | |
outputs=[cleaner_out_image]) | |
get_alpha_image_btn.click( | |
run_get_alpha_image, | |
inputs=[input_image, sel_mask], | |
outputs=[alpha_out_image, get_alpha_status_text]) | |
get_mask_btn.click( | |
run_get_mask, | |
inputs=[sel_mask], | |
outputs=[mask_out_image]) | |
return [(inpaint_anything_interface, "Inpaint Anything", "inpaint_anything")] | |
block, _, _ = on_ui_tabs()[0] | |
block.launch(share=True) | |