Spaces:
Running
Running
# Ultralytics YOLO π, AGPL-3.0 license | |
# Builds ultralytics/ultralytics:jetson-jetpack4 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics | |
# Supports JetPack4.x for YOLOv8 on Jetson Nano, TX2, Xavier NX, AGX Xavier | |
# Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-cuda | |
FROM nvcr.io/nvidia/l4t-cuda:10.2.460-runtime | |
# Set environment variables | |
ENV PYTHONUNBUFFERED=1 \ | |
PYTHONDONTWRITEBYTECODE=1 | |
# Downloads to user config dir | |
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \ | |
https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \ | |
/root/.config/Ultralytics/ | |
# Add NVIDIA repositories for TensorRT dependencies | |
RUN wget -q -O - https://repo.download.nvidia.com/jetson/jetson-ota-public.asc | apt-key add - && \ | |
echo "deb https://repo.download.nvidia.com/jetson/common r32.7 main" > /etc/apt/sources.list.d/nvidia-l4t-apt-source.list && \ | |
echo "deb https://repo.download.nvidia.com/jetson/t194 r32.7 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list | |
# Install dependencies | |
RUN apt update && \ | |
apt install --no-install-recommends -y git python3.8 python3.8-dev python3-pip python3-libnvinfer libopenmpi-dev libopenblas-base libomp-dev gcc | |
# Create symbolic links for python3.8 and pip3 | |
RUN ln -sf /usr/bin/python3.8 /usr/bin/python3 | |
RUN ln -s /usr/bin/pip3 /usr/bin/pip | |
# Create working directory | |
WORKDIR /ultralytics | |
# Copy contents and configure git | |
COPY . . | |
RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config | |
ADD https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt . | |
# Download onnxruntime-gpu 1.8.0 and tensorrt 8.2.0.6 | |
# Other versions can be seen in https://elinux.org/Jetson_Zoo and https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048 | |
ADD https://nvidia.box.com/shared/static/gjqofg7rkg97z3gc8jeyup6t8n9j8xjw.whl onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl | |
ADD https://forums.developer.nvidia.com/uploads/short-url/hASzFOm9YsJx6VVFrDW1g44CMmv.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl | |
# Install pip packages | |
RUN python3 -m pip install --upgrade pip wheel | |
RUN pip install \ | |
onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl \ | |
tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl \ | |
https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl \ | |
https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl | |
RUN pip install -e ".[export]" | |
RUN rm *.whl | |
# Usage Examples ------------------------------------------------------------------------------------------------------- | |
# Build and Push | |
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack4 -t $t . && sudo docker push $t | |
# Run | |
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker run -it --ipc=host $t | |
# Pull and Run | |
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host $t | |
# Pull and Run with NVIDIA runtime | |
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t | |