|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Any, Optional, Tuple |
|
|
|
import numpy as np |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
class PositionEmbeddingSine(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_pos_feats, |
|
temperature: int = 10000, |
|
normalize: bool = True, |
|
scale: Optional[float] = None, |
|
): |
|
super().__init__() |
|
assert num_pos_feats % 2 == 0, "Expecting even model width" |
|
self.num_pos_feats = num_pos_feats // 2 |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
self.cache = {} |
|
|
|
def _encode_xy(self, x, y): |
|
|
|
assert len(x) == len(y) and x.ndim == y.ndim == 1 |
|
x_embed = x * self.scale |
|
y_embed = y * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, None] / dim_t |
|
pos_y = y_embed[:, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 |
|
).flatten(1) |
|
pos_y = torch.stack( |
|
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 |
|
).flatten(1) |
|
return pos_x, pos_y |
|
|
|
@torch.no_grad() |
|
def encode_boxes(self, x, y, w, h): |
|
pos_x, pos_y = self._encode_xy(x, y) |
|
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) |
|
return pos |
|
|
|
encode = encode_boxes |
|
|
|
@torch.no_grad() |
|
def encode_points(self, x, y, labels): |
|
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape |
|
assert bx == by and nx == ny and bx == bl and nx == nl |
|
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) |
|
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) |
|
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) |
|
return pos |
|
|
|
@torch.no_grad() |
|
def forward(self, x: torch.Tensor): |
|
cache_key = (x.shape[-2], x.shape[-1]) |
|
if cache_key in self.cache: |
|
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) |
|
y_embed = ( |
|
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) |
|
.view(1, -1, 1) |
|
.repeat(x.shape[0], 1, x.shape[-1]) |
|
) |
|
x_embed = ( |
|
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) |
|
.view(1, 1, -1) |
|
.repeat(x.shape[0], x.shape[-2], 1) |
|
) |
|
|
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 |
|
).flatten(3) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 |
|
).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
self.cache[cache_key] = pos[0] |
|
return pos |
|
|
|
|
|
class PositionEmbeddingRandom(nn.Module): |
|
""" |
|
Positional encoding using random spatial frequencies. |
|
""" |
|
|
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: |
|
super().__init__() |
|
if scale is None or scale <= 0.0: |
|
scale = 1.0 |
|
self.register_buffer( |
|
"positional_encoding_gaussian_matrix", |
|
scale * torch.randn((2, num_pos_feats)), |
|
) |
|
|
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: |
|
"""Positionally encode points that are normalized to [0,1].""" |
|
|
|
coords = 2 * coords - 1 |
|
coords = coords @ self.positional_encoding_gaussian_matrix |
|
coords = 2 * np.pi * coords |
|
|
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) |
|
|
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor: |
|
"""Generate positional encoding for a grid of the specified size.""" |
|
h, w = size |
|
device: Any = self.positional_encoding_gaussian_matrix.device |
|
grid = torch.ones((h, w), device=device, dtype=torch.float32) |
|
y_embed = grid.cumsum(dim=0) - 0.5 |
|
x_embed = grid.cumsum(dim=1) - 0.5 |
|
y_embed = y_embed / h |
|
x_embed = x_embed / w |
|
|
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) |
|
return pe.permute(2, 0, 1) |
|
|
|
def forward_with_coords( |
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int] |
|
) -> torch.Tensor: |
|
"""Positionally encode points that are not normalized to [0,1].""" |
|
coords = coords_input.clone() |
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1] |
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0] |
|
return self._pe_encoding(coords.to(torch.float)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_t_xy(end_x: int, end_y: int): |
|
t = torch.arange(end_x * end_y, dtype=torch.float32) |
|
t_x = (t % end_x).float() |
|
t_y = torch.div(t, end_x, rounding_mode="floor").float() |
|
return t_x, t_y |
|
|
|
|
|
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): |
|
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) |
|
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) |
|
|
|
t_x, t_y = init_t_xy(end_x, end_y) |
|
freqs_x = torch.outer(t_x, freqs_x) |
|
freqs_y = torch.outer(t_y, freqs_y) |
|
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) |
|
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) |
|
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) |
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) |
|
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] |
|
return freqs_cis.view(*shape) |
|
|
|
|
|
def apply_rotary_enc( |
|
xq: torch.Tensor, |
|
xk: torch.Tensor, |
|
freqs_cis: torch.Tensor, |
|
repeat_freqs_k: bool = False, |
|
): |
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
xk_ = ( |
|
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
if xk.shape[-2] != 0 |
|
else None |
|
) |
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) |
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) |
|
if xk_ is None: |
|
|
|
return xq_out.type_as(xq).to(xq.device), xk |
|
|
|
if repeat_freqs_k: |
|
r = xk_.shape[-2] // xq_.shape[-2] |
|
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) |
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) |
|
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) |
|
|