Spaces:
Sleeping
Sleeping
import asyncio | |
import multiprocessing as mp | |
import os | |
import subprocess | |
import sys | |
from multiprocessing import Process | |
from datetime import datetime | |
from pprint import pprint | |
from langchain_core._api import deprecated | |
try: | |
import numexpr | |
n_cores = numexpr.utils.detect_number_of_cores() | |
os.environ["NUMEXPR_MAX_THREADS"] = str(n_cores) | |
except: | |
pass | |
sys.path.append(os.path.dirname(os.path.dirname(__file__))) | |
from configs import ( | |
LOG_PATH, | |
log_verbose, | |
logger, | |
LLM_MODELS, | |
EMBEDDING_MODEL, | |
TEXT_SPLITTER_NAME, | |
FSCHAT_CONTROLLER, | |
FSCHAT_OPENAI_API, | |
FSCHAT_MODEL_WORKERS, | |
API_SERVER, | |
WEBUI_SERVER, | |
HTTPX_DEFAULT_TIMEOUT, | |
) | |
from server.utils import (fschat_controller_address, fschat_model_worker_address, | |
fschat_openai_api_address, get_httpx_client, get_model_worker_config, | |
MakeFastAPIOffline, FastAPI, llm_device, embedding_device) | |
from server.knowledge_base.migrate import create_tables | |
import argparse | |
from typing import List, Dict | |
from configs import VERSION | |
def create_controller_app( | |
dispatch_method: str, | |
log_level: str = "INFO", | |
) -> FastAPI: | |
import fastchat.constants | |
fastchat.constants.LOGDIR = LOG_PATH | |
from fastchat.serve.controller import app, Controller, logger | |
logger.setLevel(log_level) | |
controller = Controller(dispatch_method) | |
sys.modules["fastchat.serve.controller"].controller = controller | |
MakeFastAPIOffline(app) | |
app.title = "FastChat Controller" | |
app._controller = controller | |
return app | |
def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI: | |
""" | |
kwargs包含的字段如下: | |
host: | |
port: | |
model_names:[`model_name`] | |
controller_address: | |
worker_address: | |
对于Langchain支持的模型: | |
langchain_model:True | |
不会使用fschat | |
对于online_api: | |
online_api:True | |
worker_class: `provider` | |
对于离线模型: | |
model_path: `model_name_or_path`,huggingface的repo-id或本地路径 | |
device:`LLM_DEVICE` | |
""" | |
import fastchat.constants | |
fastchat.constants.LOGDIR = LOG_PATH | |
import argparse | |
parser = argparse.ArgumentParser() | |
args = parser.parse_args([]) | |
for k, v in kwargs.items(): | |
setattr(args, k, v) | |
if worker_class := kwargs.get("langchain_model"): # Langchian支持的模型不用做操作 | |
from fastchat.serve.base_model_worker import app | |
worker = "" | |
# 在线模型API | |
elif worker_class := kwargs.get("worker_class"): | |
from fastchat.serve.base_model_worker import app | |
worker = worker_class(model_names=args.model_names, | |
controller_addr=args.controller_address, | |
worker_addr=args.worker_address) | |
# sys.modules["fastchat.serve.base_model_worker"].worker = worker | |
sys.modules["fastchat.serve.base_model_worker"].logger.setLevel(log_level) | |
# 本地模型 | |
else: | |
from configs.model_config import VLLM_MODEL_DICT | |
if kwargs["model_names"][0] in VLLM_MODEL_DICT and args.infer_turbo == "vllm": | |
import fastchat.serve.vllm_worker | |
from fastchat.serve.vllm_worker import VLLMWorker, app, worker_id | |
from vllm import AsyncLLMEngine | |
from vllm.engine.arg_utils import AsyncEngineArgs | |
args.tokenizer = args.model_path | |
args.tokenizer_mode = 'auto' | |
args.trust_remote_code = True | |
args.download_dir = None | |
args.load_format = 'auto' | |
args.dtype = 'auto' | |
args.seed = 0 | |
args.worker_use_ray = False | |
args.pipeline_parallel_size = 1 | |
args.tensor_parallel_size = 1 | |
args.block_size = 16 | |
args.swap_space = 4 # GiB | |
args.gpu_memory_utilization = 0.90 | |
args.max_num_batched_tokens = None # 一个批次中的最大令牌(tokens)数量,这个取决于你的显卡和大模型设置,设置太大显存会不够 | |
args.max_num_seqs = 256 | |
args.disable_log_stats = False | |
args.conv_template = None | |
args.limit_worker_concurrency = 5 | |
args.no_register = False | |
args.num_gpus = 1 # vllm worker的切分是tensor并行,这里填写显卡的数量 | |
args.engine_use_ray = False | |
args.disable_log_requests = False | |
# 0.2.1 vllm后要加的参数, 但是这里不需要 | |
args.max_model_len = None | |
args.revision = None | |
args.quantization = None | |
args.max_log_len = None | |
args.tokenizer_revision = None | |
# 0.2.2 vllm需要新加的参数 | |
args.max_paddings = 256 | |
if args.model_path: | |
args.model = args.model_path | |
if args.num_gpus > 1: | |
args.tensor_parallel_size = args.num_gpus | |
for k, v in kwargs.items(): | |
setattr(args, k, v) | |
engine_args = AsyncEngineArgs.from_cli_args(args) | |
engine = AsyncLLMEngine.from_engine_args(engine_args) | |
worker = VLLMWorker( | |
controller_addr=args.controller_address, | |
worker_addr=args.worker_address, | |
worker_id=worker_id, | |
model_path=args.model_path, | |
model_names=args.model_names, | |
limit_worker_concurrency=args.limit_worker_concurrency, | |
no_register=args.no_register, | |
llm_engine=engine, | |
conv_template=args.conv_template, | |
) | |
sys.modules["fastchat.serve.vllm_worker"].engine = engine | |
sys.modules["fastchat.serve.vllm_worker"].worker = worker | |
sys.modules["fastchat.serve.vllm_worker"].logger.setLevel(log_level) | |
else: | |
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id | |
args.gpus = "0" # GPU的编号,如果有多个GPU,可以设置为"0,1,2,3" | |
args.max_gpu_memory = "22GiB" | |
args.num_gpus = 1 # model worker的切分是model并行,这里填写显卡的数量 | |
args.load_8bit = False | |
args.cpu_offloading = None | |
args.gptq_ckpt = None | |
args.gptq_wbits = 16 | |
args.gptq_groupsize = -1 | |
args.gptq_act_order = False | |
args.awq_ckpt = None | |
args.awq_wbits = 16 | |
args.awq_groupsize = -1 | |
args.model_names = [""] | |
args.conv_template = None | |
args.limit_worker_concurrency = 5 | |
args.stream_interval = 2 | |
args.no_register = False | |
args.embed_in_truncate = False | |
for k, v in kwargs.items(): | |
setattr(args, k, v) | |
if args.gpus: | |
if args.num_gpus is None: | |
args.num_gpus = len(args.gpus.split(',')) | |
if len(args.gpus.split(",")) < args.num_gpus: | |
raise ValueError( | |
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!" | |
) | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus | |
gptq_config = GptqConfig( | |
ckpt=args.gptq_ckpt or args.model_path, | |
wbits=args.gptq_wbits, | |
groupsize=args.gptq_groupsize, | |
act_order=args.gptq_act_order, | |
) | |
awq_config = AWQConfig( | |
ckpt=args.awq_ckpt or args.model_path, | |
wbits=args.awq_wbits, | |
groupsize=args.awq_groupsize, | |
) | |
worker = ModelWorker( | |
controller_addr=args.controller_address, | |
worker_addr=args.worker_address, | |
worker_id=worker_id, | |
model_path=args.model_path, | |
model_names=args.model_names, | |
limit_worker_concurrency=args.limit_worker_concurrency, | |
no_register=args.no_register, | |
device=args.device, | |
num_gpus=args.num_gpus, | |
max_gpu_memory=args.max_gpu_memory, | |
load_8bit=args.load_8bit, | |
cpu_offloading=args.cpu_offloading, | |
gptq_config=gptq_config, | |
awq_config=awq_config, | |
stream_interval=args.stream_interval, | |
conv_template=args.conv_template, | |
embed_in_truncate=args.embed_in_truncate, | |
) | |
sys.modules["fastchat.serve.model_worker"].args = args | |
sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config | |
# sys.modules["fastchat.serve.model_worker"].worker = worker | |
sys.modules["fastchat.serve.model_worker"].logger.setLevel(log_level) | |
MakeFastAPIOffline(app) | |
app.title = f"FastChat LLM Server ({args.model_names[0]})" | |
app._worker = worker | |
return app | |
def create_openai_api_app( | |
controller_address: str, | |
api_keys: List = [], | |
log_level: str = "INFO", | |
) -> FastAPI: | |
import fastchat.constants | |
fastchat.constants.LOGDIR = LOG_PATH | |
from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings | |
from fastchat.utils import build_logger | |
logger = build_logger("openai_api", "openai_api.log") | |
logger.setLevel(log_level) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_credentials=True, | |
allow_origins=["*"], | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
sys.modules["fastchat.serve.openai_api_server"].logger = logger | |
app_settings.controller_address = controller_address | |
app_settings.api_keys = api_keys | |
MakeFastAPIOffline(app) | |
app.title = "FastChat OpeanAI API Server" | |
return app | |
def _set_app_event(app: FastAPI, started_event: mp.Event = None): | |
async def on_startup(): | |
if started_event is not None: | |
started_event.set() | |
def run_controller(log_level: str = "INFO", started_event: mp.Event = None): | |
import uvicorn | |
import httpx | |
from fastapi import Body | |
import time | |
import sys | |
from server.utils import set_httpx_config | |
set_httpx_config() | |
app = create_controller_app( | |
dispatch_method=FSCHAT_CONTROLLER.get("dispatch_method"), | |
log_level=log_level, | |
) | |
_set_app_event(app, started_event) | |
# add interface to release and load model worker | |
def release_worker( | |
model_name: str = Body(..., description="要释放模型的名称", samples=["chatglm-6b"]), | |
# worker_address: str = Body(None, description="要释放模型的地址,与名称二选一", samples=[FSCHAT_CONTROLLER_address()]), | |
new_model_name: str = Body(None, description="释放后加载该模型"), | |
keep_origin: bool = Body(False, description="不释放原模型,加载新模型") | |
) -> Dict: | |
available_models = app._controller.list_models() | |
if new_model_name in available_models: | |
msg = f"要切换的LLM模型 {new_model_name} 已经存在" | |
logger.info(msg) | |
return {"code": 500, "msg": msg} | |
if new_model_name: | |
logger.info(f"开始切换LLM模型:从 {model_name} 到 {new_model_name}") | |
else: | |
logger.info(f"即将停止LLM模型: {model_name}") | |
if model_name not in available_models: | |
msg = f"the model {model_name} is not available" | |
logger.error(msg) | |
return {"code": 500, "msg": msg} | |
worker_address = app._controller.get_worker_address(model_name) | |
if not worker_address: | |
msg = f"can not find model_worker address for {model_name}" | |
logger.error(msg) | |
return {"code": 500, "msg": msg} | |
with get_httpx_client() as client: | |
r = client.post(worker_address + "/release", | |
json={"new_model_name": new_model_name, "keep_origin": keep_origin}) | |
if r.status_code != 200: | |
msg = f"failed to release model: {model_name}" | |
logger.error(msg) | |
return {"code": 500, "msg": msg} | |
if new_model_name: | |
timer = HTTPX_DEFAULT_TIMEOUT # wait for new model_worker register | |
while timer > 0: | |
models = app._controller.list_models() | |
if new_model_name in models: | |
break | |
time.sleep(1) | |
timer -= 1 | |
if timer > 0: | |
msg = f"sucess change model from {model_name} to {new_model_name}" | |
logger.info(msg) | |
return {"code": 200, "msg": msg} | |
else: | |
msg = f"failed change model from {model_name} to {new_model_name}" | |
logger.error(msg) | |
return {"code": 500, "msg": msg} | |
else: | |
msg = f"sucess to release model: {model_name}" | |
logger.info(msg) | |
return {"code": 200, "msg": msg} | |
host = FSCHAT_CONTROLLER["host"] | |
port = FSCHAT_CONTROLLER["port"] | |
if log_level == "ERROR": | |
sys.stdout = sys.__stdout__ | |
sys.stderr = sys.__stderr__ | |
uvicorn.run(app, host=host, port=port, log_level=log_level.lower()) | |
def run_model_worker( | |
model_name: str = LLM_MODELS[0], | |
controller_address: str = "", | |
log_level: str = "INFO", | |
q: mp.Queue = None, | |
started_event: mp.Event = None, | |
): | |
import uvicorn | |
from fastapi import Body | |
import sys | |
from server.utils import set_httpx_config | |
set_httpx_config() | |
kwargs = get_model_worker_config(model_name) | |
host = kwargs.pop("host") | |
port = kwargs.pop("port") | |
kwargs["model_names"] = [model_name] | |
kwargs["controller_address"] = controller_address or fschat_controller_address() | |
kwargs["worker_address"] = fschat_model_worker_address(model_name) | |
model_path = kwargs.get("model_path", "") | |
kwargs["model_path"] = model_path | |
app = create_model_worker_app(log_level=log_level, **kwargs) | |
_set_app_event(app, started_event) | |
if log_level == "ERROR": | |
sys.stdout = sys.__stdout__ | |
sys.stderr = sys.__stderr__ | |
# add interface to release and load model | |
def release_model( | |
new_model_name: str = Body(None, description="释放后加载该模型"), | |
keep_origin: bool = Body(False, description="不释放原模型,加载新模型") | |
) -> Dict: | |
if keep_origin: | |
if new_model_name: | |
q.put([model_name, "start", new_model_name]) | |
else: | |
if new_model_name: | |
q.put([model_name, "replace", new_model_name]) | |
else: | |
q.put([model_name, "stop", None]) | |
return {"code": 200, "msg": "done"} | |
uvicorn.run(app, host=host, port=port, log_level=log_level.lower()) | |
def run_openai_api(log_level: str = "INFO", started_event: mp.Event = None): | |
import uvicorn | |
import sys | |
from server.utils import set_httpx_config | |
set_httpx_config() | |
controller_addr = fschat_controller_address() | |
app = create_openai_api_app(controller_addr, log_level=log_level) | |
_set_app_event(app, started_event) | |
host = FSCHAT_OPENAI_API["host"] | |
port = FSCHAT_OPENAI_API["port"] | |
if log_level == "ERROR": | |
sys.stdout = sys.__stdout__ | |
sys.stderr = sys.__stderr__ | |
uvicorn.run(app, host=host, port=port) | |
def run_api_server(started_event: mp.Event = None, run_mode: str = None): | |
from server.api import create_app | |
import uvicorn | |
from server.utils import set_httpx_config | |
set_httpx_config() | |
app = create_app(run_mode=run_mode) | |
_set_app_event(app, started_event) | |
host = API_SERVER["host"] | |
port = API_SERVER["port"] | |
uvicorn.run(app, host=host, port=port) | |
def run_webui(started_event: mp.Event = None, run_mode: str = None): | |
from server.utils import set_httpx_config | |
set_httpx_config() | |
host = WEBUI_SERVER["host"] | |
port = WEBUI_SERVER["port"] | |
cmd = ["streamlit", "run", "webui.py", | |
"--server.address", host, | |
"--server.port", str(port), | |
"--theme.base", "light", | |
"--theme.primaryColor", "#165dff", | |
"--theme.secondaryBackgroundColor", "#f5f5f5", | |
"--theme.textColor", "#000000", | |
] | |
if run_mode == "lite": | |
cmd += [ | |
"--", | |
"lite", | |
] | |
p = subprocess.Popen(cmd) | |
started_event.set() | |
p.wait() | |
def parse_args() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-a", | |
"--all-webui", | |
action="store_true", | |
help="run fastchat's controller/openai_api/model_worker servers, run api.py and webui.py", | |
dest="all_webui", | |
) | |
parser.add_argument( | |
"--all-api", | |
action="store_true", | |
help="run fastchat's controller/openai_api/model_worker servers, run api.py", | |
dest="all_api", | |
) | |
parser.add_argument( | |
"--llm-api", | |
action="store_true", | |
help="run fastchat's controller/openai_api/model_worker servers", | |
dest="llm_api", | |
) | |
parser.add_argument( | |
"-o", | |
"--openai-api", | |
action="store_true", | |
help="run fastchat's controller/openai_api servers", | |
dest="openai_api", | |
) | |
parser.add_argument( | |
"-m", | |
"--model-worker", | |
action="store_true", | |
help="run fastchat's model_worker server with specified model name. " | |
"specify --model-name if not using default LLM_MODELS", | |
dest="model_worker", | |
) | |
parser.add_argument( | |
"-n", | |
"--model-name", | |
type=str, | |
nargs="+", | |
default=LLM_MODELS, | |
help="specify model name for model worker. " | |
"add addition names with space seperated to start multiple model workers.", | |
dest="model_name", | |
) | |
parser.add_argument( | |
"-c", | |
"--controller", | |
type=str, | |
help="specify controller address the worker is registered to. default is FSCHAT_CONTROLLER", | |
dest="controller_address", | |
) | |
parser.add_argument( | |
"--api", | |
action="store_true", | |
help="run api.py server", | |
dest="api", | |
) | |
parser.add_argument( | |
"-p", | |
"--api-worker", | |
action="store_true", | |
help="run online model api such as zhipuai", | |
dest="api_worker", | |
) | |
parser.add_argument( | |
"-w", | |
"--webui", | |
action="store_true", | |
help="run webui.py server", | |
dest="webui", | |
) | |
parser.add_argument( | |
"-q", | |
"--quiet", | |
action="store_true", | |
help="减少fastchat服务log信息", | |
dest="quiet", | |
) | |
parser.add_argument( | |
"-i", | |
"--lite", | |
action="store_true", | |
help="以Lite模式运行:仅支持在线API的LLM对话、搜索引擎对话", | |
dest="lite", | |
) | |
args = parser.parse_args() | |
return args, parser | |
def dump_server_info(after_start=False, args=None): | |
import platform | |
import langchain | |
import fastchat | |
from server.utils import api_address, webui_address | |
print("\n") | |
print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30) | |
print(f"操作系统:{platform.platform()}.") | |
print(f"python版本:{sys.version}") | |
print(f"项目版本:{VERSION}") | |
print(f"langchain版本:{langchain.__version__}. fastchat版本:{fastchat.__version__}") | |
print("\n") | |
models = LLM_MODELS | |
if args and args.model_name: | |
models = args.model_name | |
print(f"当前使用的分词器:{TEXT_SPLITTER_NAME}") | |
print(f"当前启动的LLM模型:{models} @ {llm_device()}") | |
for model in models: | |
pprint(get_model_worker_config(model)) | |
print(f"当前Embbedings模型: {EMBEDDING_MODEL} @ {embedding_device()}") | |
if after_start: | |
print("\n") | |
print(f"服务端运行信息:") | |
if args.openai_api: | |
print(f" OpenAI API Server: {fschat_openai_api_address()}") | |
if args.api: | |
print(f" Chatchat API Server: {api_address()}") | |
if args.webui: | |
print(f" Chatchat WEBUI Server: {webui_address()}") | |
print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30) | |
print("\n") | |
async def start_main_server(): | |
import time | |
import signal | |
def handler(signalname): | |
""" | |
Python 3.9 has `signal.strsignal(signalnum)` so this closure would not be needed. | |
Also, 3.8 includes `signal.valid_signals()` that can be used to create a mapping for the same purpose. | |
""" | |
def f(signal_received, frame): | |
raise KeyboardInterrupt(f"{signalname} received") | |
return f | |
# This will be inherited by the child process if it is forked (not spawned) | |
signal.signal(signal.SIGINT, handler("SIGINT")) | |
signal.signal(signal.SIGTERM, handler("SIGTERM")) | |
mp.set_start_method("spawn") | |
manager = mp.Manager() | |
run_mode = None | |
queue = manager.Queue() | |
args, parser = parse_args() | |
if args.all_webui: | |
args.openai_api = True | |
args.model_worker = True | |
args.api = True | |
args.api_worker = True | |
args.webui = True | |
elif args.all_api: | |
args.openai_api = True | |
args.model_worker = True | |
args.api = True | |
args.api_worker = True | |
args.webui = False | |
elif args.llm_api: | |
args.openai_api = True | |
args.model_worker = True | |
args.api_worker = True | |
args.api = False | |
args.webui = False | |
if args.lite: | |
args.model_worker = False | |
run_mode = "lite" | |
dump_server_info(args=args) | |
if len(sys.argv) > 1: | |
logger.info(f"正在启动服务:") | |
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}") | |
processes = {"online_api": {}, "model_worker": {}} | |
def process_count(): | |
return len(processes) + len(processes["online_api"]) + len(processes["model_worker"]) - 2 | |
if args.quiet or not log_verbose: | |
log_level = "ERROR" | |
else: | |
log_level = "INFO" | |
controller_started = manager.Event() | |
if args.openai_api: | |
process = Process( | |
target=run_controller, | |
name=f"controller", | |
kwargs=dict(log_level=log_level, started_event=controller_started), | |
daemon=True, | |
) | |
processes["controller"] = process | |
process = Process( | |
target=run_openai_api, | |
name=f"openai_api", | |
daemon=True, | |
) | |
processes["openai_api"] = process | |
model_worker_started = [] | |
if args.model_worker: | |
for model_name in args.model_name: | |
config = get_model_worker_config(model_name) | |
if not config.get("online_api"): | |
e = manager.Event() | |
model_worker_started.append(e) | |
process = Process( | |
target=run_model_worker, | |
name=f"model_worker - {model_name}", | |
kwargs=dict(model_name=model_name, | |
controller_address=args.controller_address, | |
log_level=log_level, | |
q=queue, | |
started_event=e), | |
daemon=True, | |
) | |
processes["model_worker"][model_name] = process | |
if args.api_worker: | |
for model_name in args.model_name: | |
config = get_model_worker_config(model_name) | |
if (config.get("online_api") | |
and config.get("worker_class") | |
and model_name in FSCHAT_MODEL_WORKERS): | |
e = manager.Event() | |
model_worker_started.append(e) | |
process = Process( | |
target=run_model_worker, | |
name=f"api_worker - {model_name}", | |
kwargs=dict(model_name=model_name, | |
controller_address=args.controller_address, | |
log_level=log_level, | |
q=queue, | |
started_event=e), | |
daemon=True, | |
) | |
processes["online_api"][model_name] = process | |
api_started = manager.Event() | |
if args.api: | |
process = Process( | |
target=run_api_server, | |
name=f"API Server", | |
kwargs=dict(started_event=api_started, run_mode=run_mode), | |
daemon=True, | |
) | |
processes["api"] = process | |
webui_started = manager.Event() | |
if args.webui: | |
process = Process( | |
target=run_webui, | |
name=f"WEBUI Server", | |
kwargs=dict(started_event=webui_started, run_mode=run_mode), | |
daemon=True, | |
) | |
processes["webui"] = process | |
if process_count() == 0: | |
parser.print_help() | |
else: | |
try: | |
# 保证任务收到SIGINT后,能够正常退出 | |
if p := processes.get("controller"): | |
p.start() | |
p.name = f"{p.name} ({p.pid})" | |
controller_started.wait() # 等待controller启动完成 | |
if p := processes.get("openai_api"): | |
p.start() | |
p.name = f"{p.name} ({p.pid})" | |
for n, p in processes.get("model_worker", {}).items(): | |
p.start() | |
p.name = f"{p.name} ({p.pid})" | |
for n, p in processes.get("online_api", []).items(): | |
p.start() | |
p.name = f"{p.name} ({p.pid})" | |
# 等待所有model_worker启动完成 | |
for e in model_worker_started: | |
e.wait() | |
if p := processes.get("api"): | |
p.start() | |
p.name = f"{p.name} ({p.pid})" | |
api_started.wait() # 等待api.py启动完成 | |
if p := processes.get("webui"): | |
p.start() | |
p.name = f"{p.name} ({p.pid})" | |
webui_started.wait() # 等待webui.py启动完成 | |
dump_server_info(after_start=True, args=args) | |
while True: | |
cmd = queue.get() # 收到切换模型的消息 | |
e = manager.Event() | |
if isinstance(cmd, list): | |
model_name, cmd, new_model_name = cmd | |
if cmd == "start": # 运行新模型 | |
logger.info(f"准备启动新模型进程:{new_model_name}") | |
process = Process( | |
target=run_model_worker, | |
name=f"model_worker - {new_model_name}", | |
kwargs=dict(model_name=new_model_name, | |
controller_address=args.controller_address, | |
log_level=log_level, | |
q=queue, | |
started_event=e), | |
daemon=True, | |
) | |
process.start() | |
process.name = f"{process.name} ({process.pid})" | |
processes["model_worker"][new_model_name] = process | |
e.wait() | |
logger.info(f"成功启动新模型进程:{new_model_name}") | |
elif cmd == "stop": | |
if process := processes["model_worker"].get(model_name): | |
time.sleep(1) | |
process.terminate() | |
process.join() | |
logger.info(f"停止模型进程:{model_name}") | |
else: | |
logger.error(f"未找到模型进程:{model_name}") | |
elif cmd == "replace": | |
if process := processes["model_worker"].pop(model_name, None): | |
logger.info(f"停止模型进程:{model_name}") | |
start_time = datetime.now() | |
time.sleep(1) | |
process.terminate() | |
process.join() | |
process = Process( | |
target=run_model_worker, | |
name=f"model_worker - {new_model_name}", | |
kwargs=dict(model_name=new_model_name, | |
controller_address=args.controller_address, | |
log_level=log_level, | |
q=queue, | |
started_event=e), | |
daemon=True, | |
) | |
process.start() | |
process.name = f"{process.name} ({process.pid})" | |
processes["model_worker"][new_model_name] = process | |
e.wait() | |
timing = datetime.now() - start_time | |
logger.info(f"成功启动新模型进程:{new_model_name}。用时:{timing}。") | |
else: | |
logger.error(f"未找到模型进程:{model_name}") | |
# for process in processes.get("model_worker", {}).values(): | |
# process.join() | |
# for process in processes.get("online_api", {}).values(): | |
# process.join() | |
# for name, process in processes.items(): | |
# if name not in ["model_worker", "online_api"]: | |
# if isinstance(p, dict): | |
# for work_process in p.values(): | |
# work_process.join() | |
# else: | |
# process.join() | |
except Exception as e: | |
logger.error(e) | |
logger.warning("Caught KeyboardInterrupt! Setting stop event...") | |
finally: | |
# Send SIGINT if process doesn't exit quickly enough, and kill it as last resort | |
# .is_alive() also implicitly joins the process (good practice in linux) | |
# while alive_procs := [p for p in processes.values() if p.is_alive()]: | |
for p in processes.values(): | |
logger.warning("Sending SIGKILL to %s", p) | |
# Queues and other inter-process communication primitives can break when | |
# process is killed, but we don't care here | |
if isinstance(p, dict): | |
for process in p.values(): | |
process.kill() | |
else: | |
p.kill() | |
for p in processes.values(): | |
logger.info("Process status: %s", p) | |
if __name__ == "__main__": | |
create_tables() | |
if sys.version_info < (3, 10): | |
loop = asyncio.get_event_loop() | |
else: | |
try: | |
loop = asyncio.get_running_loop() | |
except RuntimeError: | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
loop.run_until_complete(start_main_server()) | |
# 服务启动后接口调用示例: | |
# import openai | |
# openai.api_key = "EMPTY" # Not support yet | |
# openai.api_base = "http://localhost:8888/v1" | |
# model = "chatglm3-6b" | |
# # create a chat completion | |
# completion = openai.ChatCompletion.create( | |
# model=model, | |
# messages=[{"role": "user", "content": "Hello! What is your name?"}] | |
# ) | |
# # print the completion | |
# print(completion.choices[0].message.content) | |