Spaces:
Running
Running
import json | |
from typing import List, Dict, Optional | |
from langchain.schema import Document | |
from langchain.vectorstores.pgvector import PGVector, DistanceStrategy | |
from sqlalchemy import text | |
from configs import kbs_config | |
from server.knowledge_base.kb_service.base import SupportedVSType, KBService, EmbeddingsFunAdapter, \ | |
score_threshold_process | |
from server.knowledge_base.utils import KnowledgeFile | |
import shutil | |
import sqlalchemy | |
from sqlalchemy.engine.base import Engine | |
from sqlalchemy.orm import Session | |
class PGKBService(KBService): | |
engine: Engine = sqlalchemy.create_engine(kbs_config.get("pg").get("connection_uri"), pool_size=10) | |
def _load_pg_vector(self): | |
self.pg_vector = PGVector(embedding_function=EmbeddingsFunAdapter(self.embed_model), | |
collection_name=self.kb_name, | |
distance_strategy=DistanceStrategy.EUCLIDEAN, | |
connection=PGKBService.engine, | |
connection_string=kbs_config.get("pg").get("connection_uri")) | |
def get_doc_by_ids(self, ids: List[str]) -> List[Document]: | |
with Session(PGKBService.engine) as session: | |
stmt = text("SELECT document, cmetadata FROM langchain_pg_embedding WHERE collection_id in :ids") | |
results = [Document(page_content=row[0], metadata=row[1]) for row in | |
session.execute(stmt, {'ids': ids}).fetchall()] | |
return results | |
def del_doc_by_ids(self, ids: List[str]) -> bool: | |
return super().del_doc_by_ids(ids) | |
def do_init(self): | |
self._load_pg_vector() | |
def do_create_kb(self): | |
pass | |
def vs_type(self) -> str: | |
return SupportedVSType.PG | |
def do_drop_kb(self): | |
with Session(PGKBService.engine) as session: | |
session.execute(text(f''' | |
-- 删除 langchain_pg_embedding 表中关联到 langchain_pg_collection 表中 的记录 | |
DELETE FROM langchain_pg_embedding | |
WHERE collection_id IN ( | |
SELECT uuid FROM langchain_pg_collection WHERE name = '{self.kb_name}' | |
); | |
-- 删除 langchain_pg_collection 表中 记录 | |
DELETE FROM langchain_pg_collection WHERE name = '{self.kb_name}'; | |
''')) | |
session.commit() | |
shutil.rmtree(self.kb_path) | |
def do_search(self, query: str, top_k: int, score_threshold: float): | |
embed_func = EmbeddingsFunAdapter(self.embed_model) | |
embeddings = embed_func.embed_query(query) | |
docs = self.pg_vector.similarity_search_with_score_by_vector(embeddings, top_k) | |
return score_threshold_process(score_threshold, top_k, docs) | |
def do_add_doc(self, docs: List[Document], **kwargs) -> List[Dict]: | |
ids = self.pg_vector.add_documents(docs) | |
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)] | |
return doc_infos | |
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs): | |
with Session(PGKBService.engine) as session: | |
filepath = kb_file.filepath.replace('\\', '\\\\') | |
session.execute( | |
text( | |
''' DELETE FROM langchain_pg_embedding WHERE cmetadata::jsonb @> '{"source": "filepath"}'::jsonb;'''.replace( | |
"filepath", filepath))) | |
session.commit() | |
def do_clear_vs(self): | |
self.pg_vector.delete_collection() | |
self.pg_vector.create_collection() | |
if __name__ == '__main__': | |
from server.db.base import Base, engine | |
# Base.metadata.create_all(bind=engine) | |
pGKBService = PGKBService("test") | |
# pGKBService.create_kb() | |
# pGKBService.add_doc(KnowledgeFile("README.md", "test")) | |
# pGKBService.delete_doc(KnowledgeFile("README.md", "test")) | |
# pGKBService.drop_kb() | |
print(pGKBService.get_doc_by_ids(["f1e51390-3029-4a19-90dc-7118aaa25772"])) | |
# print(pGKBService.search_docs("如何启动api服务")) | |