langchain-chatchat / server /llm_api_stale.py
Zulelee's picture
Upload 254 files
5e9cd1d verified
"""
调用示例: python llm_api_stale.py --model-path-address THUDM/chatglm2-6b@localhost@7650 THUDM/chatglm2-6b-32k@localhost@7651
其他fastchat.server.controller/worker/openai_api_server参数可按照fastchat文档调用
但少数非关键参数如--worker-address,--allowed-origins,--allowed-methods,--allowed-headers不支持
"""
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
import subprocess
import re
import logging
import argparse
LOG_PATH = "./logs/"
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)
parser = argparse.ArgumentParser()
# ------multi worker-----------------
parser.add_argument('--model-path-address',
default="THUDM/chatglm2-6b@localhost@20002",
nargs="+",
type=str,
help="model path, host, and port, formatted as model-path@host@port")
# ---------------controller-------------------------
parser.add_argument("--controller-host", type=str, default="localhost")
parser.add_argument("--controller-port", type=int, default=21001)
parser.add_argument(
"--dispatch-method",
type=str,
choices=["lottery", "shortest_queue"],
default="shortest_queue",
)
controller_args = ["controller-host", "controller-port", "dispatch-method"]
# ----------------------worker------------------------------------------
parser.add_argument("--worker-host", type=str, default="localhost")
parser.add_argument("--worker-port", type=int, default=21002)
# parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
# parser.add_argument(
# "--controller-address", type=str, default="http://localhost:21001"
# )
parser.add_argument(
"--model-path",
type=str,
default="lmsys/vicuna-7b-v1.3",
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
)
parser.add_argument(
"--revision",
type=str,
default="main",
help="Hugging Face Hub model revision identifier",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda", "mps", "xpu"],
default="cuda",
help="The device type",
)
parser.add_argument(
"--gpus",
type=str,
default="0",
help="A single GPU like 1 or multiple GPUs like 0,2",
)
parser.add_argument("--num-gpus", type=int, default=1)
parser.add_argument(
"--max-gpu-memory",
type=str,
default="20GiB",
help="The maximum memory per gpu. Use a string like '13Gib'",
)
parser.add_argument(
"--load-8bit", action="store_true", help="Use 8-bit quantization"
)
parser.add_argument(
"--cpu-offloading",
action="store_true",
help="Only when using 8-bit quantization: Offload excess weights to the CPU that don't fit on the GPU",
)
parser.add_argument(
"--gptq-ckpt",
type=str,
default=None,
help="Load quantized model. The path to the local GPTQ checkpoint.",
)
parser.add_argument(
"--gptq-wbits",
type=int,
default=16,
choices=[2, 3, 4, 8, 16],
help="#bits to use for quantization",
)
parser.add_argument(
"--gptq-groupsize",
type=int,
default=-1,
help="Groupsize to use for quantization; default uses full row.",
)
parser.add_argument(
"--gptq-act-order",
action="store_true",
help="Whether to apply the activation order GPTQ heuristic",
)
parser.add_argument(
"--model-names",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument(
"--limit-worker-concurrency",
type=int,
default=5,
help="Limit the model concurrency to prevent OOM.",
)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
worker_args = [
"worker-host", "worker-port",
"model-path", "revision", "device", "gpus", "num-gpus",
"max-gpu-memory", "load-8bit", "cpu-offloading",
"gptq-ckpt", "gptq-wbits", "gptq-groupsize",
"gptq-act-order", "model-names", "limit-worker-concurrency",
"stream-interval", "no-register",
"controller-address", "worker-address"
]
# -----------------openai server---------------------------
parser.add_argument("--server-host", type=str, default="localhost", help="host name")
parser.add_argument("--server-port", type=int, default=8888, help="port number")
parser.add_argument(
"--allow-credentials", action="store_true", help="allow credentials"
)
# parser.add_argument(
# "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
# )
# parser.add_argument(
# "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
# )
# parser.add_argument(
# "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
# )
parser.add_argument(
"--api-keys",
type=lambda s: s.split(","),
help="Optional list of comma separated API keys",
)
server_args = ["server-host", "server-port", "allow-credentials", "api-keys",
"controller-address"
]
# 0,controller, model_worker, openai_api_server
# 1, 命令行选项
# 2,LOG_PATH
# 3, log的文件名
base_launch_sh = "nohup python3 -m fastchat.serve.{0} {1} >{2}/{3}.log 2>&1 &"
# 0 log_path
# ! 1 log的文件名,必须与bash_launch_sh一致
# 2 controller, worker, openai_api_server
base_check_sh = """while [ `grep -c "Uvicorn running on" {0}/{1}.log` -eq '0' ];do
sleep 5s;
echo "wait {2} running"
done
echo '{2} running' """
def string_args(args, args_list):
"""将args中的key转化为字符串"""
args_str = ""
for key, value in args._get_kwargs():
# args._get_kwargs中的key以_为分隔符,先转换,再判断是否在指定的args列表中
key = key.replace("_", "-")
if key not in args_list:
continue
# fastchat中port,host没有前缀,去除前缀
key = key.split("-")[-1] if re.search("port|host", key) else key
if not value:
pass
# 1==True -> True
elif isinstance(value, bool) and value == True:
args_str += f" --{key} "
elif isinstance(value, list) or isinstance(value, tuple) or isinstance(value, set):
value = " ".join(value)
args_str += f" --{key} {value} "
else:
args_str += f" --{key} {value} "
return args_str
def launch_worker(item, args, worker_args=worker_args):
log_name = item.split("/")[-1].split("\\")[-1].replace("-", "_").replace("@", "_").replace(".", "_")
# 先分割model-path-address,在传到string_args中分析参数
args.model_path, args.worker_host, args.worker_port = item.split("@")
args.worker_address = f"http://{args.worker_host}:{args.worker_port}"
print("*" * 80)
print(f"如长时间未启动,请到{LOG_PATH}{log_name}.log下查看日志")
worker_str_args = string_args(args, worker_args)
print(worker_str_args)
worker_sh = base_launch_sh.format("model_worker", worker_str_args, LOG_PATH, f"worker_{log_name}")
worker_check_sh = base_check_sh.format(LOG_PATH, f"worker_{log_name}", "model_worker")
subprocess.run(worker_sh, shell=True, check=True)
subprocess.run(worker_check_sh, shell=True, check=True)
def launch_all(args,
controller_args=controller_args,
worker_args=worker_args,
server_args=server_args
):
print(f"Launching llm service,logs are located in {LOG_PATH}...")
print(f"开始启动LLM服务,请到{LOG_PATH}下监控各模块日志...")
controller_str_args = string_args(args, controller_args)
controller_sh = base_launch_sh.format("controller", controller_str_args, LOG_PATH, "controller")
controller_check_sh = base_check_sh.format(LOG_PATH, "controller", "controller")
subprocess.run(controller_sh, shell=True, check=True)
subprocess.run(controller_check_sh, shell=True, check=True)
print(f"worker启动时间视设备不同而不同,约需3-10分钟,请耐心等待...")
if isinstance(args.model_path_address, str):
launch_worker(args.model_path_address, args=args, worker_args=worker_args)
else:
for idx, item in enumerate(args.model_path_address):
print(f"开始加载第{idx}个模型:{item}")
launch_worker(item, args=args, worker_args=worker_args)
server_str_args = string_args(args, server_args)
server_sh = base_launch_sh.format("openai_api_server", server_str_args, LOG_PATH, "openai_api_server")
server_check_sh = base_check_sh.format(LOG_PATH, "openai_api_server", "openai_api_server")
subprocess.run(server_sh, shell=True, check=True)
subprocess.run(server_check_sh, shell=True, check=True)
print("Launching LLM service done!")
print("LLM服务启动完毕。")
if __name__ == "__main__":
args = parser.parse_args()
# 必须要加http//:,否则InvalidSchema: No connection adapters were found
args = argparse.Namespace(**vars(args),
**{"controller-address": f"http://{args.controller_host}:{str(args.controller_port)}"})
if args.gpus:
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
launch_all(args=args)