Zymrael commited on
Commit
f34e8aa
1 Parent(s): 9118588
Files changed (2) hide show
  1. app.py +225 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ import torch.nn.functional as F
5
+
6
+ import gradio as gr
7
+
8
+ from einops import rearrange, repeat
9
+
10
+ import torchvision.transforms.functional as ttf
11
+ from timm.models.convmixer import ConvMixer
12
+ import functorch
13
+
14
+ def img_to_patches(im, patch_h, patch_w):
15
+ "B, C, H, W -> B, C, D, h_patch, w_patch"
16
+ bs, c, h, w = im.shape
17
+ im = im.unfold(-1, patch_h, patch_w).unfold(2, patch_h, patch_w)
18
+ im = im.permute(0, 1, 2, 3, 5, 4)
19
+ im = im.contiguous().view(bs, c, -1, patch_h, patch_w)
20
+ return im
21
+
22
+ def patches_to_img(patches, num_patch_h, num_patch_w):
23
+ "B, C, D, h_patch, w_patch -> B, C, H, W"
24
+ bs, c, d, h, w = patches.shape
25
+ patches = patches.view(bs, c, num_patch_h, num_patch_w, h, w)
26
+ # fold patches
27
+ patches = torch.cat([patches[..., k, :, :] for k in range(num_patch_w)], dim=-1)
28
+ x = torch.cat([patches[..., k, :, :] for k in range(num_patch_h)], dim=-2)
29
+ return x
30
+
31
+ def vmapped_rotate(x, angle, in_dims=1):
32
+ "B, C, D, H, W -> B, C, D, H, W"
33
+ rotate_ = functorch.vmap(ttf.rotate, in_dims=in_dims, out_dims=in_dims)
34
+ return rotate_(x, angle=angle)
35
+
36
+ class CollageOperator2d(nn.Module):
37
+
38
+ def __init__(self, res, rh, rw, dh=None, dw=None, use_augmentations=False):
39
+ """Collage Operator for two-dimensional data. Given a fractal code, it outputs the corresponding fixed-point.
40
+
41
+ Args:
42
+ res (int): Spatial resolutions of input (and output) data.
43
+ rh (int): Height of range (target) square patches.
44
+ rw (int): Width of range (target) square patches.
45
+ dh (int, optional): Height of range domain (source) patches. Defaults to `res`.
46
+ dw (int, optional): Width of range domain (source) patches. Defaults to `res`.
47
+ use_augmentations (bool, optional): Use augmentations of domain square patches at each decoding iteration. Defaults to `False`.
48
+ """
49
+ super().__init__()
50
+ self.dh, self.dw = dh, dw
51
+ if self.dh is None: self.dh = res
52
+ if self.dw is None: self.dw = res
53
+
54
+ # 5 refers to the 5 copies of domain patches generated with the current choice of augmentations:
55
+ # 3 rotations (90, 180, 270), horizontal flips and vertical flips.
56
+ self.n_aug_transforms = 9 if use_augmentations else 0
57
+
58
+ # precompute useful quantities related to the partitioning scheme into patches, given
59
+ # the desired `dh`, `dw`, `rh`, `rw`.
60
+ partition_info = self.collage_partition_info(res, self.dh, self.dw, rh, rw)
61
+ self.n_dh, self.n_dw, self.n_rh, self.n_rw, self.h_factors, self.w_factors, self.n_domains, self.n_ranges = partition_info
62
+
63
+ # At each step of the collage, all (source) domain patches are pooled down to the size of range (target) patches.
64
+ # Notices how the pooling factors do not change if one decodes at higher resolutions, since both domain and range
65
+ # patch sizes are multiplied by the same integer.
66
+ self.pool = nn.AvgPool3d(kernel_size=(1, self.h_factors, self.w_factors), stride=(1, self.h_factors, self.w_factors))
67
+
68
+ def collage_operator(self, z, collage_weight, collage_bias):
69
+ """Collage Operator (decoding). Performs the steps described in Def. 3.1, Figure 2."""
70
+
71
+ # Given the current iterate `z`, we split it into domain patches according to the partitioning scheme.
72
+ domains = img_to_patches(z)
73
+
74
+ # Pool domains (pre augmentation) to range patch sizes.
75
+ pooled_domains = self.pool(domains)
76
+
77
+ # If needed, produce additional candidate domain patches as augmentations of existing domains.
78
+ # Auxiliary learned feature maps / patches are also introduced here.
79
+ if self.n_aug_transforms > 1:
80
+ pooled_domains = self.generate_candidates(pooled_domains)
81
+
82
+ pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.num_ranges)
83
+
84
+ # Apply the affine maps to domain patches
85
+ range_domains = torch.einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, collage_weight)
86
+ range_domains = range_domains + collage_bias[..., None, None]
87
+
88
+ # Reconstruct data by "composing" the output patches back together (collage!).
89
+ z = patches_to_img(range_domains)
90
+
91
+ return z
92
+
93
+ def decode_step(self, z, weight, bias, superres_factor, return_patches=False):
94
+ """Single Collage Operator step. Performs the steps described in:
95
+ https://arxiv.org/pdf/2204.07673.pdf (Def. 3.1, Figure 2).
96
+ """
97
+
98
+ # Given the current iterate `z`, we split it into `n_domains` domain patches.
99
+ domains = img_to_patches(z, patch_h=self.dh * superres_factor, patch_w=self.dw * superres_factor)
100
+
101
+ # Pool domains (pre augmentation) for compatibility with range patches.
102
+ pooled_domains = self.pool(domains)
103
+
104
+ # If needed, produce additional candidate domain patches as augmentations of existing domains.
105
+ if self.n_aug_transforms > 1:
106
+ pooled_domains = self.generate_candidates(pooled_domains)
107
+
108
+ pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.n_ranges)
109
+
110
+ # Apply the affine maps to domain patches
111
+ range_domains = torch.einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, weight)
112
+ range_domains = range_domains + bias[:, :, :, None, None]
113
+
114
+ # Reconstruct data by "composing" the output patches back together (collage!).
115
+ z = patches_to_img(range_domains, self.n_rh, self.n_rw)
116
+ if return_patches: return z, (domains, pooled_domains, range_domains)
117
+ return z
118
+
119
+ def generate_candidates(self, domains):
120
+ domains = domains.permute(0,2,1,3,4)
121
+ rotations = [vmapped_rotate(domains, angle=angle) for angle in (90, 180, 270)]
122
+ hflips = ttf.hflip(domains)
123
+ vflips = ttf.vflip(domains)
124
+ br_shift = ttf.adjust_brightness(domains, 0.5)
125
+ cr_shift = ttf.adjust_contrast(domains, 0.5)
126
+ hue_shift = ttf.adjust_hue(domains, 0.5)
127
+ sat_shift = ttf.adjust_saturation(domains, 0.5)
128
+ domains = torch.cat([domains, *rotations, hflips, vflips, br_shift, cr_shift, hue_shift, sat_shift], dim=1)
129
+ return domains.permute(0,2,1,3,4)
130
+
131
+ def forward(self, x, co_w, co_bias, decode_steps=20, superres_factor=1):
132
+ B, C, H, W = x.shape
133
+ # It does not matter which initial condition is chosen, so long as the dimensions match.
134
+ # The fixed-point of a Collage Operator is uniquely determined* by the fractal code
135
+ # *: and auxiliary learned patches, if any.
136
+ z = torch.randn(B, C, H * superres_factor, W * superres_factor).to(x.device)
137
+ for _ in range(decode_steps):
138
+ z = self.decode_step(z, co_w, co_bias, superres_factor)
139
+ return z
140
+
141
+ def collage_partition_info(self, input_res, dh, dw, rh, rw):
142
+ """
143
+ Computes auxiliary information for the collage (number of source and target domains, and relative size factors)
144
+ """
145
+ height = width = input_res
146
+ n_dh, n_dw = height // dh, width // dw
147
+ n_domains = n_dh * n_dw
148
+
149
+ # Adjust number of domain patches to include augmentations
150
+ n_domains = n_domains + n_domains * self.n_aug_transforms # (3 rotations, hflip, vlip)
151
+
152
+ h_factors, w_factors = dh // rh, dw // rw
153
+ n_rh, n_rw = input_res // rh, input_res // rw
154
+ n_ranges = n_rh * n_rw
155
+ return n_dh, n_dw, n_rh, n_rw, h_factors, w_factors, n_domains, n_ranges
156
+
157
+
158
+ class NeuralCollageOperator2d(nn.Module):
159
+ def __init__(self, out_res, out_channels, rh, rw, dh=None, dw=None, net=None, use_augmentations=False):
160
+ super().__init__()
161
+ self.co = CollageOperator2d(out_res, rh, rw, dh, dw, use_augmentations)
162
+ # In a Collage Operator, the affine map requires a single scalar weight
163
+ # for each pair of domain and range patches, and a single scalar bias for each range.
164
+ # `net` learns to output these weights based on the objective.
165
+ self.co_w_dim = self.co.n_domains * self.co.n_ranges * out_channels
166
+ self.co_bias_dim = self.co.n_ranges * out_channels
167
+ tot_out_dim = self.co_w_dim + self.co_bias_dim
168
+
169
+ # Does not need to be a ConvMixer: for deep generative Neural Collages `net` can be e.g, a VDVAE.
170
+ if net is None:
171
+ net = ConvMixer(dim=32, depth=8, kernel_size=9, patch_size=7, num_classes=tot_out_dim)
172
+ self.net = net
173
+
174
+ self.softmax = nn.Softmax(dim=-1)
175
+ self.tanh = nn.Tanh()
176
+
177
+ def forward(self, x, decode_steps=10, superres_factor=1, return_co_code=False):
178
+ B, C, H, W = x.shape
179
+ co_code = self.net(x) # B, C, co_w_dim + co_mix_dim + co_bias_dim
180
+ co_w, co_bias = torch.split(co_code, [self.co_w_dim, self.co_bias_dim], dim=-1)
181
+
182
+ co_w = co_w.view(B, C, self.co.n_domains, self.co.n_ranges)
183
+ # No restrictions on co_w, thus no guarantee of contractiveness.
184
+ # In the full jax version of Neural Collages we enforce the constraint |co_w| < 1 (elementwise).
185
+ co_bias = co_bias.view(B, C, self.co.n_ranges)
186
+ co_bias = self.tanh(co_bias)
187
+
188
+ z = self.co(x, co_w, co_bias, decode_steps=decode_steps, superres_factor=superres_factor)
189
+
190
+ if return_co_code: return z, co_w, co_bias
191
+ else: return z
192
+
193
+
194
+
195
+ def fractalize(img, superresolution_factor=1):
196
+ superresolution_factor = int(superresolution_factor)
197
+
198
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
199
+
200
+ im = np.asarray(img)
201
+
202
+ im = torch.from_numpy(im).permute(2,0,1).to(device)
203
+ co = NeuralCollageOperator2d(out_res=100, out_channels=3, rh=2, rw=2, dh=100, dw=100).to(device)
204
+
205
+ opt = torch.optim.Adam(co.parameters(), lr=1e-2)
206
+ objective = nn.MSELoss()
207
+ norm_im = im.float().unsqueeze(0) / 255
208
+
209
+ for _ in range(200):
210
+ recon = co(norm_im, decode_steps=10, return_co_code=False)
211
+
212
+ loss = objective(recon, norm_im)
213
+ loss.backward()
214
+ opt.step()
215
+ opt.zero_grad()
216
+
217
+ fractal_img = co(norm_im, decode_steps=10, superres_factor=superresolution_factor)[0].permute(1,2,0).clamp(-1, 1)
218
+ return fractal_img.cpu().detach().numpy()
219
+
220
+ demo = gr.Interface(
221
+ fn=fractalize,
222
+ inputs=[gr.Image(shape=(100, 100), image_mode='RGB'), gr.Slider(1, 40, step=1)],
223
+ outputs="image"
224
+ )
225
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ numpy
2
+ torch
3
+ einops
4
+ timm
5
+ torchvision
6
+ functorch
7
+ torch