Text-to-Video / app.py
adi-123's picture
comment added
5b8b126
raw
history blame
1.29 kB
#Imports
import gradio as gr
from diffusers import DiffusionPipeline
from diffusers.schedulers import DPMSolverMultistepScheduler
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
from base64 import b64encode
import torch
device = "cpu" # Force CPU usage
# Load pipeline (outside the function for efficiency)
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
def Generate_video(prompt, video_duration_seconds):
num_frames = video_duration_seconds * 10
video_frames = pipe(prompt=prompt, negative_prompt="low quality",
num_inference_steps=25, num_frames=num_frames).frames
video_path = export_to_video(video_frames) # Assuming you have this function defined
return video_path
# Create Gradio interface
iface = gr.Interface(
fn=Generate_video,
inputs=[
gr.Textbox(lines=5, label="Prompt"),
gr.Number(label="Video Duration (seconds)", value=3),
],
outputs=gr.Video(label="Generated Video"),
)
# Launch the app
iface.launch(debug=True)