Spaces:
Sleeping
Sleeping
Create app.y
Browse files
app.y
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Union
|
2 |
+
from google.cloud import aiplatform
|
3 |
+
from google.protobuf import json_format
|
4 |
+
from google.protobuf.struct_pb2 import Value
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import pandas as pd
|
8 |
+
import plotly.express as px
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
import streamlit as st
|
11 |
+
import nltk
|
12 |
+
import json
|
13 |
+
import tempfile
|
14 |
+
|
15 |
+
# process of getting credentials
|
16 |
+
def get_credentials():
|
17 |
+
creds_json_str = os.getenv("JSONSTR") # get json credentials stored as a string
|
18 |
+
if creds_json_str is None:
|
19 |
+
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
20 |
+
|
21 |
+
# create a temporary file
|
22 |
+
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as temp:
|
23 |
+
temp.write(creds_json_str) # write in json format
|
24 |
+
temp_filename = temp.name
|
25 |
+
|
26 |
+
return temp_filename
|
27 |
+
|
28 |
+
# pass
|
29 |
+
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]= get_credentials()
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
max_seq_length = 2048
|
34 |
+
dtype = None
|
35 |
+
load_in_4bit = True
|
36 |
+
|
37 |
+
# Check if 'punkt' is already downloaded, otherwise download it
|
38 |
+
try:
|
39 |
+
nltk.data.find('tokenizers/punkt')
|
40 |
+
except LookupError:
|
41 |
+
nltk.download('punkt')
|
42 |
+
|
43 |
+
text_split_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
|
44 |
+
|
45 |
+
|
46 |
+
def predict_custom_trained_model_sample(
|
47 |
+
project: str,
|
48 |
+
endpoint_id: str,
|
49 |
+
instances: Union[Dict, List[Dict]],
|
50 |
+
location: str = "us-east4",
|
51 |
+
api_endpoint: str = "us-east4-aiplatform.googleapis.com",
|
52 |
+
) -> List[str]:
|
53 |
+
"""
|
54 |
+
`instances` can be either single instance of type dict or a list
|
55 |
+
of instances.
|
56 |
+
"""
|
57 |
+
client_options = {"api_endpoint": api_endpoint}
|
58 |
+
client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
|
59 |
+
instances = instances if isinstance(instances, list) else [instances]
|
60 |
+
instances = [
|
61 |
+
json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
|
62 |
+
]
|
63 |
+
parameters_dict = {}
|
64 |
+
parameters = json_format.ParseDict(parameters_dict, Value())
|
65 |
+
endpoint = client.endpoint_path(
|
66 |
+
project=project, location=location, endpoint=endpoint_id
|
67 |
+
)
|
68 |
+
response = client.predict(
|
69 |
+
endpoint=endpoint, instances=instances, parameters=parameters
|
70 |
+
)
|
71 |
+
predictions_list = []
|
72 |
+
predictions = response.predictions
|
73 |
+
for prediction in predictions:
|
74 |
+
if isinstance(prediction, str):
|
75 |
+
clean_prediction = re.sub(r'(\n|Origin|###|Optimization|Response:)', '', prediction)
|
76 |
+
split_predictions = clean_prediction.split()
|
77 |
+
predictions_list.extend(split_predictions)
|
78 |
+
else:
|
79 |
+
print(" prediction (unknown type, skipping):", prediction)
|
80 |
+
return [emotion for emotion in predictions_list if emotion in d_emotion.values()]
|
81 |
+
|
82 |
+
|
83 |
+
d_emotion = {0: 'admiration', 1: 'amusement', 2: 'anger', 3: 'annoyance', 4: 'approval', 5: 'caring', 6: 'confusion',
|
84 |
+
7: 'curiosity', 8: 'desire', 9: 'disappointment', 10: 'disapproval', 11: 'disgust', 12: 'embarrassment',
|
85 |
+
13: 'excitement', 14: 'fear', 15: 'gratitude', 16: 'grief', 17: 'joy', 18: 'love', 19: 'nervousness',
|
86 |
+
20: 'optimism', 21: 'pride', 22: 'realization', 23: 'relief', 24: 'remorse', 25: 'sadness', 26: 'surprise',
|
87 |
+
27: 'neutral'}
|
88 |
+
|
89 |
+
st.write("Write or paste any number of document texts to analyse the emotion percentage with your document")
|
90 |
+
|
91 |
+
user_input = st.text_area('Enter Text to Analyze')
|
92 |
+
button = st.button("Analyze")
|
93 |
+
|
94 |
+
if user_input and button:
|
95 |
+
alpaca_prompt = """Below is a conversation between a human and an AI agent. write a response based on the input.
|
96 |
+
### Instruction:
|
97 |
+
predict the emotion word or words
|
98 |
+
### Input:
|
99 |
+
{}
|
100 |
+
### Response:
|
101 |
+
"""
|
102 |
+
|
103 |
+
instances = []
|
104 |
+
input_array = text_split_tokenizer.tokenize(user_input)
|
105 |
+
for sentence in input_array:
|
106 |
+
formatted_input = alpaca_prompt.format(sentence.strip())
|
107 |
+
instance = {
|
108 |
+
"inputs": formatted_input,
|
109 |
+
"parameters": {
|
110 |
+
"max_new_tokens": 4,
|
111 |
+
"temperature": 0.00001,
|
112 |
+
"top_p": 0.9,
|
113 |
+
"top_k": 10
|
114 |
+
}
|
115 |
+
}
|
116 |
+
instances.append(instance)
|
117 |
+
|
118 |
+
predictions = predict_custom_trained_model_sample(
|
119 |
+
project=os.environ["project"],
|
120 |
+
endpoint_id=os.environ["endpoint_id"],
|
121 |
+
location=os.environ["location"],
|
122 |
+
instances=instances
|
123 |
+
)
|
124 |
+
|
125 |
+
emotion_counts = pd.Series(predictions).value_counts(normalize=True).reset_index()
|
126 |
+
emotion_counts.columns = ['Emotion', 'Percentage']
|
127 |
+
emotion_counts['Percentage'] *= 100 # Convert to percentage
|
128 |
+
fig_pie = px.pie(emotion_counts, values='Percentage', names='Emotion', title='Percentage of Emotions in Given Text')
|
129 |
+
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
130 |
+
|
131 |
+
@st.cache_data
|
132 |
+
def get_emotion_chart(predictions):
|
133 |
+
emotion_counts = pd.Series(predictions).value_counts().reset_index()
|
134 |
+
emotion_counts.columns = ['Emotion', 'Count']
|
135 |
+
fig_bar = go.Figure()
|
136 |
+
fig_bar.add_trace(go.Bar(
|
137 |
+
x=emotion_counts['Emotion'],
|
138 |
+
y=emotion_counts['Count'],
|
139 |
+
marker_color='indianred'
|
140 |
+
))
|
141 |
+
fig_bar.update_layout(title='Count of Each Emotion in Given Text', xaxis_title='Emotion', yaxis_title='Count')
|
142 |
+
return fig_bar
|
143 |
+
|
144 |
+
fig_bar = get_emotion_chart(predictions)
|
145 |
+
|
146 |
+
|
147 |
+
@st.cache_data
|
148 |
+
def get_emotion_heatmap(predictions):
|
149 |
+
# Create a matrix for heatmap
|
150 |
+
|
151 |
+
# Count occurrences of each emotion
|
152 |
+
emotion_counts = pd.Series(predictions).value_counts().reset_index()
|
153 |
+
emotion_counts.columns = ['Emotion', 'Count']
|
154 |
+
|
155 |
+
heatmap_matrix = pd.DataFrame(0, index=d_emotion.values(), columns=d_emotion.values())
|
156 |
+
for index, row in emotion_counts.iterrows():
|
157 |
+
heatmap_matrix.at[row['Emotion'], row['Emotion']] = row['Count']
|
158 |
+
|
159 |
+
fig = go.Figure(data=go.Heatmap(
|
160 |
+
z=heatmap_matrix.values,
|
161 |
+
x=heatmap_matrix.columns.tolist(),
|
162 |
+
y=heatmap_matrix.index.tolist(),
|
163 |
+
text=heatmap_matrix.values,
|
164 |
+
hovertemplate="Count: %{text}",
|
165 |
+
colorscale='Viridis'
|
166 |
+
))
|
167 |
+
fig.update_layout(title='Emotion Heatmap', xaxis_title='Predicted Emotion', yaxis_title='Predicted Emotion')
|
168 |
+
return fig
|
169 |
+
|
170 |
+
fig_dist = get_emotion_heatmap(predictions)
|
171 |
+
|
172 |
+
tab1, tab2, tab3 = st.tabs(["Emotion Analysis", "Emotion Counts Distribution", "Heatmap"])
|
173 |
+
with tab1:
|
174 |
+
st.plotly_chart(fig_pie)
|
175 |
+
with tab2:
|
176 |
+
st.plotly_chart(fig_bar)
|
177 |
+
with tab3:
|
178 |
+
st.plotly_chart(fig_dist)
|