ababio commited on
Commit
e0d7678
·
verified ·
1 Parent(s): 68b7123

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -37
app.py CHANGED
@@ -9,26 +9,23 @@ import plotly.express as px
9
  import plotly.graph_objects as go
10
  import streamlit as st
11
  import nltk
12
- import json
13
  import tempfile
14
 
15
- # process of getting credentials
16
  def get_credentials():
17
- creds_json_str = os.getenv("JSONSTR") # get json credentials stored as a string
18
  if creds_json_str is None:
19
  raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
20
 
21
- # create a temporary file
22
  with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as temp:
23
- temp.write(creds_json_str) # write in json format
24
- temp_filename = temp.name
25
 
26
  return temp_filename
27
-
28
- # pass
29
- os.environ["GOOGLE_APPLICATION_CREDENTIALS"]= get_credentials()
30
-
31
 
 
 
32
 
33
  max_seq_length = 2048
34
  dtype = None
@@ -42,7 +39,6 @@ except LookupError:
42
 
43
  text_split_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
44
 
45
-
46
  def predict_custom_trained_model_sample(
47
  project: str,
48
  endpoint_id: str,
@@ -50,10 +46,6 @@ def predict_custom_trained_model_sample(
50
  location: str = "us-east4",
51
  api_endpoint: str = "us-east4-aiplatform.googleapis.com",
52
  ) -> List[str]:
53
- """
54
- `instances` can be either single instance of type dict or a list
55
- of instances.
56
- """
57
  client_options = {"api_endpoint": api_endpoint}
58
  client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
59
  instances = instances if isinstance(instances, list) else [instances]
@@ -76,36 +68,30 @@ def predict_custom_trained_model_sample(
76
  split_predictions = clean_prediction.split()
77
  predictions_list.extend(split_predictions)
78
  else:
79
- print(" prediction (unknown type, skipping):", prediction)
80
  return [emotion for emotion in predictions_list if emotion in d_emotion.values()]
81
 
82
-
83
  d_emotion = {0: 'admiration', 1: 'amusement', 2: 'anger', 3: 'annoyance', 4: 'approval', 5: 'caring', 6: 'confusion',
84
  7: 'curiosity', 8: 'desire', 9: 'disappointment', 10: 'disapproval', 11: 'disgust', 12: 'embarrassment',
85
  13: 'excitement', 14: 'fear', 15: 'gratitude', 16: 'grief', 17: 'joy', 18: 'love', 19: 'nervousness',
86
  20: 'optimism', 21: 'pride', 22: 'realization', 23: 'relief', 24: 'remorse', 25: 'sadness', 26: 'surprise',
87
  27: 'neutral'}
88
 
89
- st.write(" ")
90
- st.write(" ")
91
- st.write("Write or paste any number of document texts to analyse the emotion percentage with your document")
 
92
 
93
  # Add button to fill in sample text
94
  if st.button("Use Sample Text"):
95
- user_input = st.text_area(label="Sample", value="Once, in a small village nestled in the rolling hills of Tuscany, lived an elderly woman named Isabella. She had spent her entire life in this village, raising her children and caring for her garden, which was the most beautiful in the region. Her husband, Marco, had passed away many years ago, leaving her with a heart full of memories and a small, quaint house that overlooked the lush vineyards.", disabled=True)
96
  else:
97
  user_input = st.text_area('Enter Text to Analyze')
98
 
99
-
100
- # user_input = st.text_input(label, value=ur_input, height=None, max_chars=None, key=None, help=None, on_change=None, args=None, kwargs=None, *, placeholder=None, disabled=False, label_visibility="visible")
101
-
102
  button = st.button("Analyze")
103
 
104
-
105
-
106
-
107
  if user_input and button:
108
- alpaca_prompt = """Below is a conversation between a human and an AI agent. write a response based on the input.
109
  ### Instruction:
110
  predict the emotion word or words
111
  ### Input:
@@ -156,11 +142,9 @@ if user_input and button:
156
 
157
  fig_bar = get_emotion_chart(predictions)
158
 
159
-
160
  @st.cache_data
161
  def get_emotion_heatmap(predictions):
162
  # Create a matrix for heatmap
163
-
164
  # Count occurrences of each emotion
165
  emotion_counts = pd.Series(predictions).value_counts().reset_index()
166
  emotion_counts.columns = ['Emotion', 'Count']
@@ -179,15 +163,13 @@ if user_input and button:
179
  ))
180
  fig.update_layout(title='Emotion Heatmap', xaxis_title='Predicted Emotion', yaxis_title='Predicted Emotion')
181
  return fig
182
-
183
- fig_dist = get_emotion_heatmap(predictions)
184
-
185
- tab1, tab2, tab3 = st.tabs(["Emotion Analysis", "Emotion Counts Distribution", "Heatmap"])
186
  with tab1:
187
  st.plotly_chart(fig_pie)
188
  with tab2:
189
  st.plotly_chart(fig_bar)
190
  with tab3:
191
- st.plotly_chart(fig_dist)
192
-
193
-
 
9
  import plotly.graph_objects as go
10
  import streamlit as st
11
  import nltk
 
12
  import tempfile
13
 
14
+ # Process of getting credentials
15
  def get_credentials():
16
+ creds_json_str = os.getenv("JSONSTR") # Get json credentials stored as a string
17
  if creds_json_str is None:
18
  raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
19
 
20
+ # Create a temporary file
21
  with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as temp:
22
+ temp.write(creds_json_str) # Write in json format
23
+ temp_filename = temp.name
24
 
25
  return temp_filename
 
 
 
 
26
 
27
+ # Set the credentials
28
+ os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = get_credentials()
29
 
30
  max_seq_length = 2048
31
  dtype = None
 
39
 
40
  text_split_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
41
 
 
42
  def predict_custom_trained_model_sample(
43
  project: str,
44
  endpoint_id: str,
 
46
  location: str = "us-east4",
47
  api_endpoint: str = "us-east4-aiplatform.googleapis.com",
48
  ) -> List[str]:
 
 
 
 
49
  client_options = {"api_endpoint": api_endpoint}
50
  client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
51
  instances = instances if isinstance(instances, list) else [instances]
 
68
  split_predictions = clean_prediction.split()
69
  predictions_list.extend(split_predictions)
70
  else:
71
+ print("prediction (unknown type, skipping):", prediction)
72
  return [emotion for emotion in predictions_list if emotion in d_emotion.values()]
73
 
 
74
  d_emotion = {0: 'admiration', 1: 'amusement', 2: 'anger', 3: 'annoyance', 4: 'approval', 5: 'caring', 6: 'confusion',
75
  7: 'curiosity', 8: 'desire', 9: 'disappointment', 10: 'disapproval', 11: 'disgust', 12: 'embarrassment',
76
  13: 'excitement', 14: 'fear', 15: 'gratitude', 16: 'grief', 17: 'joy', 18: 'love', 19: 'nervousness',
77
  20: 'optimism', 21: 'pride', 22: 'realization', 23: 'relief', 24: 'remorse', 25: 'sadness', 26: 'surprise',
78
  27: 'neutral'}
79
 
80
+ st.write("Write or paste any number of document texts to analyze the emotion percentage within your document")
81
+
82
+ # Define user_input outside the conditional block
83
+ user_input = ""
84
 
85
  # Add button to fill in sample text
86
  if st.button("Use Sample Text"):
87
+ user_input = "Once, in a small village nestled in the rolling hills of Tuscany, lived an elderly woman named Isabella. She had spent her entire life in this village, raising her children and caring for her garden, which was the most beautiful in the region. Her husband, Marco, had passed away many years ago, leaving her with a heart full of memories and a small, quaint house that overlooked the lush vineyards."
88
  else:
89
  user_input = st.text_area('Enter Text to Analyze')
90
 
 
 
 
91
  button = st.button("Analyze")
92
 
 
 
 
93
  if user_input and button:
94
+ alpaca_prompt = """Below is a conversation between a human and an AI agent. Write a response based on the input.
95
  ### Instruction:
96
  predict the emotion word or words
97
  ### Input:
 
142
 
143
  fig_bar = get_emotion_chart(predictions)
144
 
 
145
  @st.cache_data
146
  def get_emotion_heatmap(predictions):
147
  # Create a matrix for heatmap
 
148
  # Count occurrences of each emotion
149
  emotion_counts = pd.Series(predictions).value_counts().reset_index()
150
  emotion_counts.columns = ['Emotion', 'Count']
 
163
  ))
164
  fig.update_layout(title='Emotion Heatmap', xaxis_title='Predicted Emotion', yaxis_title='Predicted Emotion')
165
  return fig
166
+
167
+ fig_heatmap = get_emotion_heatmap(predictions)
168
+
169
+ tab1, tab2, tab3 = st.tabs(["Emotion Analysis", "Emotion Counts Distribution", "Heatmap"])
170
  with tab1:
171
  st.plotly_chart(fig_pie)
172
  with tab2:
173
  st.plotly_chart(fig_bar)
174
  with tab3:
175
+ st.plotly_chart(fig_heatmap)