Spaces:
Running
Running
abhilashnl2006
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,64 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
import torch
|
5 |
import logging
|
6 |
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
10 |
-
|
11 |
-
model_name = "meta-llama/Llama-3.2-1B" # Ensure this model is available for your use
|
12 |
-
|
13 |
-
# In Hugging Face Spaces, the token is usually available as an environment variable
|
14 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
15 |
if not hf_token:
|
16 |
-
logger.
|
|
|
17 |
|
18 |
-
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
20 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
21 |
-
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
22 |
-
logger.info(f"Successfully loaded model and tokenizer: {model_name}")
|
23 |
-
except Exception as e:
|
24 |
-
logger.error(f"Failed to load model or tokenizer: {type(e).__name__}: {str(e)}")
|
25 |
-
# Fallback to a smaller, open-access model if the specified model fails to load
|
26 |
-
model_name = "distilgpt2"
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
29 |
-
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
30 |
-
logger.info(f"Fallback: Loaded model and tokenizer: {model_name}")
|
31 |
|
32 |
def generate_text(prompt):
|
33 |
try:
|
34 |
logger.info(f"Attempting to generate text for prompt: {prompt[:50]}...")
|
35 |
|
36 |
-
response =
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
logger.info(f"Generated text: {
|
41 |
-
return
|
42 |
except Exception as e:
|
43 |
logger.error(f"Error in generate_text: {type(e).__name__}: {str(e)}")
|
44 |
return f"An error occurred: {type(e).__name__}: {str(e)}"
|
45 |
|
46 |
def generate_email(industry, recipient_role, company_details):
|
47 |
try:
|
48 |
-
prompt = f"""Generate a professional cold outreach email
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
|
66 |
generated_text = generate_text(prompt)
|
67 |
|
68 |
-
# Remove
|
69 |
-
email_content = generated_text
|
70 |
|
71 |
logger.info(f"Generated email for {industry}, {recipient_role}")
|
72 |
return email_content
|
@@ -76,7 +68,7 @@ def generate_email(industry, recipient_role, company_details):
|
|
76 |
|
77 |
def test_model_connection():
|
78 |
try:
|
79 |
-
test_prompt = "
|
80 |
response = generate_text(test_prompt)
|
81 |
logger.info(f"Test model connection successful. Response: {response}")
|
82 |
return "Model connection test successful. Response: " + response
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from huggingface_hub import InferenceClient
|
|
|
4 |
import logging
|
5 |
|
6 |
logging.basicConfig(level=logging.INFO)
|
7 |
logger = logging.getLogger(__name__)
|
8 |
|
9 |
+
model_name = "meta-llama/Llama-3.2-1B"
|
|
|
|
|
|
|
10 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
11 |
if not hf_token:
|
12 |
+
logger.error("HUGGINGFACE_TOKEN environment variable is not set")
|
13 |
+
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
14 |
|
15 |
+
client = InferenceClient(model=model_name, token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def generate_text(prompt):
|
18 |
try:
|
19 |
logger.info(f"Attempting to generate text for prompt: {prompt[:50]}...")
|
20 |
|
21 |
+
response = client.text_generation(
|
22 |
+
prompt,
|
23 |
+
max_new_tokens=500,
|
24 |
+
temperature=0.7,
|
25 |
+
top_k=50,
|
26 |
+
top_p=0.95,
|
27 |
+
do_sample=True
|
28 |
+
)
|
29 |
|
30 |
+
logger.info(f"Generated text: {response[:100]}...")
|
31 |
+
return response
|
32 |
except Exception as e:
|
33 |
logger.error(f"Error in generate_text: {type(e).__name__}: {str(e)}")
|
34 |
return f"An error occurred: {type(e).__name__}: {str(e)}"
|
35 |
|
36 |
def generate_email(industry, recipient_role, company_details):
|
37 |
try:
|
38 |
+
prompt = f"""Task: Generate a professional cold outreach email.
|
39 |
+
|
40 |
+
Context:
|
41 |
+
- Industry: {industry}
|
42 |
+
- Recipient Role: {recipient_role}
|
43 |
+
- Company Details: {company_details}
|
44 |
+
|
45 |
+
Instructions:
|
46 |
+
1. Create a catchy subject line related to the industry and recipient role.
|
47 |
+
2. Write a personalized greeting.
|
48 |
+
3. Introduce yourself and your company briefly.
|
49 |
+
4. Explain how your company can benefit the recipient, using specific details from the company information.
|
50 |
+
5. Suggest a meeting or call to discuss further.
|
51 |
+
6. Thank the recipient and provide your contact information.
|
52 |
+
7. Use a professional closing.
|
53 |
+
|
54 |
+
Now, write the email following these instructions. Be creative and specific, don't use placeholder text:
|
55 |
+
|
56 |
+
"""
|
57 |
|
58 |
generated_text = generate_text(prompt)
|
59 |
|
60 |
+
# Remove any remaining prompt text if present
|
61 |
+
email_content = generated_text.split("Now, write the email following these instructions.")[-1].strip()
|
62 |
|
63 |
logger.info(f"Generated email for {industry}, {recipient_role}")
|
64 |
return email_content
|
|
|
68 |
|
69 |
def test_model_connection():
|
70 |
try:
|
71 |
+
test_prompt = "Write a short paragraph about the importance of AI in modern business:"
|
72 |
response = generate_text(test_prompt)
|
73 |
logger.info(f"Test model connection successful. Response: {response}")
|
74 |
return "Model connection test successful. Response: " + response
|