File size: 8,873 Bytes
3dea211
 
fe50e4e
 
 
 
54c3b8d
fe50e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625a980
fe50e4e
625a980
 
 
fe50e4e
625a980
 
 
 
 
fe50e4e
 
 
 
 
 
 
 
6aefa50
 
fe50e4e
 
 
 
 
 
 
 
 
 
 
6aefa50
fe50e4e
 
 
3dea211
54c3b8d
3dea211
 
c04afa4
9324678
 
54c3b8d
 
 
 
 
 
ffb4993
3dea211
 
fe50e4e
 
3dea211
 
fe50e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625a980
fe50e4e
3dea211
fe50e4e
3dea211
fe50e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dea211
fe50e4e
 
3dea211
 
fe50e4e
 
 
 
 
3dea211
fe50e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dea211
 
 
fe50e4e
 
 
3dea211
 
fe50e4e
 
 
 
3dea211
 
 
fe50e4e
 
 
3dea211
 
fe50e4e
 
 
 
3dea211
 
fe50e4e
 
 
3dea211
 
fe50e4e
 
 
 
 
 
3dea211
 
fe50e4e
 
 
54c3b8d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
from datetime import datetime, timedelta
import random
from functools import partial
import gradio as gr
from huggingface_hub import InferenceClient
import threading

css = """
gradio-app {
    background: none !important;
}

.md .container {
    border:1px solid #ccc; 
    border-radius:5px; 
    min-height:300px;
    color: #666;
    display: flex;
    justify-content: center;
    align-items: center;
    text-align: center;
    font-family: monospace;
    padding: 10px;
}

#hf_token_box {
    transition: height 1s ease-out, opacity 1s ease-out;
}

#hf_token_box.abc {
    height: 0;
    opacity: 0;
    overflow: hidden;
}

#generate_button {
    transition: background-color 1s ease-out, color 1s ease-out; border-color 1s ease-out;
}

#generate_button.changed {
    background: black !important;
    border-color: black !important; 
    color: white !important;
}
"""

js = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') === 'dark') {
        url.searchParams.set('__theme', 'light');
        window.location.href = url.href;
    }
}
"""

system_prompt = """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
"""

code = """
```python
from huggingface_hub import InferenceClient

SYSTEM_PROMPT = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
PROMPT = "{PROMPT}"
MODEL_NAME = "meta-llama/Meta-Llama-3-70b-Instruct"  # or "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO" or "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1"

messages = [
    {"role": "system", "content": SYSTEM_PROMPT}, 
    {"role": "user", "content": PROMPT}
]
client = InferenceClient(model=MODEL_NAME, token=HF_TOKEN)
for c in client.chat_completion(messages, max_tokens=200, stream=True):
    token = c.choices[0].delta.content
    print(token, end="")
```
"""

ip_requests = {}
ip_requests_lock = threading.Lock()

def allow_ip(request: gr.Request, show_error=True):
    ip = request.headers.get("X-Forwarded-For")
    now = datetime.now()
    window = timedelta(hours=24)
    with ip_requests_lock:
        if ip in ip_requests:
            ip_requests[ip] = [timestamp for timestamp in ip_requests[ip] if now - timestamp < window]
        if len(ip_requests.get(ip, [])) >= 15:
            raise gr.Error("Rate limit exceeded. Please try again tomorrow or use your Hugging Face Pro token.", visible=show_error)
        ip_requests.setdefault(ip, []).append(now)
        print("ip_requests", ip_requests)
    return True

def inference(prompt, hf_token, model, model_name):
    messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}]
    if hf_token is None or not hf_token.strip():
        hf_token = os.getenv("HF_TOKEN")
    client = InferenceClient(model=model, token=hf_token)
    tokens = f"**`{model_name}`**\n\n"
    for completion in client.chat_completion(messages, max_tokens=200, stream=True):
        token = completion.choices[0].delta.content
        tokens += token
        yield tokens

def random_prompt():
    return random.choice([
        "Give me 5 very different ways to say the following sentence: 'The quick brown fox jumps over the lazy dog.'",
        "Write a summary of the plot of the movie 'Inception' using only emojis.",
        "Write a sentence with the words 'serendipity', 'baguette', and 'C++'.",
        "Explain the concept of 'quantum entanglement' to a 5-year-old.",
        "Write a couplet about Python"
    ])

with gr.Blocks(css=css, theme="NoCrypt/miku", js=js) as demo:
    gr.Markdown("<center><h1>🔮 Open LLM Explorer</h1></center>")
    gr.Markdown("Every LLM has its own personality! Type your prompt below and compare results from the 3 leading open models from the [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) that are on the Hugging Face Inference API. You can sign up for [Hugging Face Pro](https://huggingface.co/pricing#pro) and get a token to avoid rate limits.")
    prompt = gr.Textbox(random_prompt, lines=2, show_label=False, info="Type your prompt here.")
    hf_token_box = gr.Textbox(lines=1, placeholder="Your Hugging Face token (not required, but a HF Pro account avoids rate limits):", show_label=False, elem_id="hf_token_box", type="password")
    with gr.Group():
        with gr.Row():
            generate_btn = gr.Button(value="Generate", elem_id="generate_button", variant="primary", size="sm")
            code_btn = gr.Button(value="View Code", elem_id="code_button", variant="secondary", size="sm")

    with gr.Row() as output_row:
        llama_output = gr.Markdown("<div class='container'>Llama 3-70B Instruct</div>", elem_classes=["md"], height=300)
        nous_output = gr.Markdown("<div class='container'>Nous Hermes 2 Mixtral 8x7B DPO</div>", elem_classes=["md"], height=300)
        zephyr_output = gr.Markdown("<div class='container'>Zephyr ORPO 141B A35B</div>", elem_classes=["md"], height=300)

    with gr.Row(visible=False) as code_row:
        code_display = gr.Markdown(code, elem_classes=["md"], height=300)

    output_visible = gr.State(True)
    code_btn.click(
        lambda x: (not x, gr.Row(visible=not x), gr.Row(visible=x), "View Results" if x else "View Code"),
        output_visible,
        [output_visible, output_row, code_row, code_btn],
        api_name=False,
    )

    false = gr.State(False)

    gr.on(
        [prompt.submit, generate_btn.click],
        None,
        None, 
        None,
        api_name=False,
        js="""
            function disappear() {
            var element = document.getElementById("hf_token_box");
            var height = element.offsetHeight;
            var step = height / 30; // Adjust this value to change the speed of disappearance
            var padding_top = parseFloat(getComputedStyle(element).paddingTop); // Get initial padding
            var padding_bottom = parseFloat(getComputedStyle(element).paddingBottom); // Get initial padding
            var step_padding = padding_top / 30; // Adjust this value to change the speed of disappearance

            var interval = setInterval(function() {
                if (height > 0) {
                    height -= step;
                    element.style.height = height + "px";
                    padding_bottom -= step_padding;
                    element.style.paddingBottom = padding_bottom + "px";
                    console.log("height", height);
                } else {
                    clearInterval(interval);
                }
            }, 20); // Adjust this value to change the smoothness of the animation
            }
        """
    )    

    gr.on(
        [prompt.submit, generate_btn.click],
        allow_ip,
        false,
    ).success(
        partial(inference, model="meta-llama/Meta-Llama-3-70b-Instruct", model_name="Llama 3-70B Instruct"),
        [prompt, hf_token_box],
        llama_output,
        show_progress="hidden",
        api_name=False
    )

    gr.on(
        [prompt.submit, generate_btn.click],
        allow_ip,
        false,
    ).success(
        partial(inference, model="NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", model_name="Nous Hermes 2 Mixtral 8x7B DPO"),
        [prompt, hf_token_box],
        nous_output,
        show_progress="hidden",
        api_name=False
    )

    gr.on(
        [prompt.submit, generate_btn.click],
        allow_ip,
    ).success(
        partial(inference, model="HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", model_name="Zephyr ORPO 141B A35B"),
        [prompt, hf_token_box],
        zephyr_output,
        show_progress="hidden",
        api_name=False
    )

    gr.on(
        triggers=[prompt.submit, generate_btn.click],
        fn=lambda x: (code.replace("{PROMPT}", x), True, gr.Row(visible=True), gr.Row(visible=False), "View Code"),
        inputs=[prompt],
        outputs=[code_display, output_visible, output_row, code_row, code_btn],
        api_name=False
    )


demo.launch(show_api=False)