File size: 9,547 Bytes
463ec0f bc4ccb5 463ec0f 2cf2d78 463ec0f bc4ccb5 463ec0f bc4ccb5 463ec0f 64a6606 463ec0f 64a6606 463ec0f bc4ccb5 463ec0f 2cf2d78 463ec0f bc4ccb5 463ec0f 2cf2d78 463ec0f bc4ccb5 463ec0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# credit: https://huggingface.co/spaces/simonduerr/3dmol.js/blob/main/app.py
from typing import Tuple
import os
import sys
from urllib import request
import gradio as gr
import requests
from transformers import AutoTokenizer, AutoModelForMaskedLM, EsmModel, AutoModel
import torch
import progres as pg
import esm
import msa
tokenizer_nt = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
model_nt = AutoModelForMaskedLM.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
model_nt.eval()
tokenizer_aa = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
model_aa = EsmModel.from_pretrained("facebook/esm2_t12_35M_UR50D")
model_aa.eval()
tokenizer_se = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
model_se = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
model_se.eval()
msa_transformer, msa_transformer_alphabet = esm.pretrained.esm_msa1b_t12_100M_UR50S()
msa_transformer = msa_transformer.eval()
msa_transformer_batch_converter = msa_transformer_alphabet.get_batch_converter()
def nt_embed(sequence: str):
tokens_ids = tokenizer_nt.batch_encode_plus([sequence], return_tensors="pt")["input_ids"]
attention_mask = tokens_ids != tokenizer_nt.pad_token_id
with torch.no_grad():
torch_outs = model_nt(
tokens_ids,#.to('cuda'),
attention_mask=attention_mask,#.to('cuda'),
output_hidden_states=True
)
last_layer_CLS = torch_outs.hidden_states[-1].detach()[:, 0, :][0]
return last_layer_CLS
def aa_embed(sequence: str):
tokens = tokenizer_aa([sequence], return_tensors="pt")
with torch.no_grad():
torch_outs = model_aa(**tokens)
return torch_outs[0]
def se_embed(sentence: str):
encoded_input = tokenizer_se([sentence], return_tensors='pt')
with torch.no_grad():
model_output = model_se(**encoded_input)
return model_output[0]
def msa_embed(msa):
inputs = msa.greedy_select(inputs, num_seqs=128) # can change this to pass more/fewer sequences
msa_transformer_batch_labels, msa_transformer_batch_strs, msa_transformer_batch_tokens = msa_transformer_batch_converter([inputs])
msa_transformer_batch_tokens = msa_transformer_batch_tokens.to(next(msa_transformer.parameters()).device)
temp = msa_transformer(msa_transformer_batch_tokens,repr_layers=[12])['representations']
temp = temp[12][:,:,0,:]
temp = torch.mean(temp,(0,1))
return temp
def download_data_if_required():
url_base = f"https://zenodo.org/record/{pg.zenodo_record}/files"
fps = [pg.trained_model_fp]
urls = [f"{url_base}/trained_model.pt"]
#for targetdb in pre_embedded_dbs:
# fps.append(os.path.join(database_dir, targetdb + ".pt"))
# urls.append(f"{url_base}/{targetdb}.pt")
if not os.path.isdir(pg.trained_model_dir):
os.makedirs(pg.trained_model_dir)
#if not os.path.isdir(database_dir):
# os.makedirs(database_dir)
printed = False
for fp, url in zip(fps, urls):
if not os.path.isfile(fp):
if not printed:
print("Downloading data as first time setup (~340 MB) to ", pg.progres_dir,
", internet connection required, this can take a few minutes",
sep="", file=sys.stderr)
printed = True
try:
request.urlretrieve(url, fp)
d = torch.load(fp, map_location="cpu")
if fp == pg.trained_model_fp:
assert "model" in d
else:
assert "embeddings" in d
except:
if os.path.isfile(fp):
os.remove(fp)
print("Failed to download from", url, "and save to", fp, file=sys.stderr)
print("Exiting", file=sys.stderr)
sys.exit(1)
if printed:
print("Data downloaded successfully", file=sys.stderr)
def get_pdb(pdb_code="", filepath=""):
if pdb_code is None or pdb_code == "":
try:
with open(filepath.name) as f:
return f.read()
except AttributeError as e:
return None
else:
return requests.get(f"https://files.rcsb.org/view/{pdb_code}.pdb").content.decode()
def molecule(pdb):
x = (
"""<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<style>
body{
font-family:sans-serif
}
.mol-container {
width: 100%;
height: 600px;
position: relative;
}
.mol-container select{
background-image:None;
}
</style>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js" integrity="sha512-STof4xm1wgkfm7heWqFJVn58Hm3EtS31XFaagaa8VMReCXAkQnJZ+jEy8PCC/iT18dFy95WcExNHFTqLyp72eQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
</head>
<body>
<div id="container" class="mol-container"></div>
<script>
let pdb = `"""
+ pdb
+ """`
$(document).ready(function () {
let element = $("#container");
let config = { backgroundColor: "black" };
let viewer = $3Dmol.createViewer(element, config);
viewer.addModel(pdb, "pdb");
viewer.getModel(0).setStyle({}, { cartoon: { color:"spectrum" } });
viewer.addSurface("MS", { opacity: .5, color: "white" });
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
})
</script>
</body></html>"""
)
return f"""<iframe style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def str2coords(s):
coords = []
for line in s.split('\n'):
if (line.startswith("ATOM ") or line.startswith("HETATM")) and line[12:16].strip() == "CA":
coords.append([float(line[30:38]), float(line[38:46]), float(line[46:54])])
elif line.startswith("ENDMDL"):
break
return coords
def update_st(inp, file):
pdb = get_pdb(inp, file)
return (molecule(pdb), pg.embed_coords(str2coords(pdb)))
def update_nt(inp):
return str(nt_embed(inp or ''))
def update_aa(inp):
return str(aa_embed(inp))
def update_se(inp):
return str(se_embed(inp))
def update_go(inp):
return str(go_embed(inp))
def update_msa(inp):
return str(msa_embed(msa.read_msa(inp)))
demo = gr.Blocks()
with demo:
with gr.Tabs():
with gr.TabItem("PDB Structural Embeddings"):
with gr.Row():
with gr.Box():
inp = gr.Textbox(
placeholder="PDB Code or upload file below", label="Input structure"
)
file = gr.File(file_count="single")
gr.Examples(["2CBA", "6VXX"], inp)
btn = gr.Button("View structure")
gr.Markdown("# PDB viewer using 3Dmol.js")
mol = gr.HTML()
emb = gr.Textbox(interactive=False)
btn.click(fn=update_st, inputs=[inp, file], outputs=[mol, emb])
with gr.TabItem("Nucleotide Sequence Embeddings"):
with gr.Box():
inp = gr.Textbox(
placeholder="ATCGCTGCCCGTAGATAATAAGAGACACTGAGGCC", label="Input Nucleotide Sequence"
)
btn = gr.Button("View embeddings")
emb = gr.Textbox(interactive=False)
btn.click(fn=update_nt, inputs=[inp], outputs=emb)
with gr.TabItem("Amino Acid Sequence Embeddings"):
with gr.Box():
inp = gr.Textbox(
placeholder="AAGQCYRGRCSGGLCCSKYGYCGSGPAYCG", label="Input Amino Acid Sequence"
)
btn = gr.Button("View embeddings")
emb = gr.Textbox(interactive=False)
btn.click(fn=update_aa, inputs=[inp], outputs=emb)
with gr.TabItem("Sentence Embeddings"):
with gr.Box():
inp = gr.Textbox(
placeholder="Your text here", label="Input Sentence"
)
btn = gr.Button("View embeddings")
emb = gr.Textbox(interactive=False)
btn.click(fn=update_se, inputs=[inp], outputs=emb)
with gr.TabItem("MSA Embeddings"):
with gr.Box():
inp = gr.File(file_count="single", label="Input MSA")
btn = gr.Button("View embeddings")
emb = gr.Textbox(interactive=False)
btn.click(fn=update_msa, inputs=[inp], outputs=emb)
with gr.TabItem("GO Embeddings"):
with gr.Box():
inp = gr.Textbox(
placeholder="", label="Input GO Terms"
)
btn = gr.Button("View embeddings")
emb = gr.Textbox(interactive=False)
btn.click(fn=update_go, inputs=[inp], outputs=emb)
if __name__ == "__main__":
download_data_if_required()
demo.launch() |