SVM / app.py
BIOML's picture
Update app.py
2cf2d78
raw
history blame
3.03 kB
import torch
import streamlit as st
from transformers import AutoTokenizer, OPTForCausalLM
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-30b")
model = OPTForCausalLM.from_pretrained("facebook/galactica-30b", device_map='auto', low_cpu_mem_usage=True, torch_dtype=torch.float16)
model.gradient_checkpointing_enable()
return tokenizer, model
st.set_page_config(
page_title='BioML-SVM',
layout="wide"
)
with st.spinner("Loading Models and Tokens..."):
tokenizer, model = load_model()
with st.form(key='my_form'):
col1, col2 = st.columns([10, 1])
text_input = col1.text_input(label='Enter the amino sequence')
with col2:
st.text('')
st.text('')
submit_button = st.form_submit_button(label='Submit')
if submit_button:
st.session_state['result_done'] = False
# input_text = "[START_AMINO]GHMQSITAGQKVISKHKNGRFYQCEVVRLTTETFYEVNFDDGSFSDNLYPEDIVSQDCLQFGPPAEGEVVQVRWTDGQVYGAKFVASHPIQMYQVEFEDGSQLVVKRDDVYTLDEELP[END_AMINO]"
with st.spinner('Generating...'):
# formatted_text = f"[START_AMINO]{text_input}[END_AMINO]"
# formatted_text = f"Here is the sequence: [START_AMINO]{text_input}[END_AMINO]"
formatted_text = f"{text_input}"
input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids=input_ids,
max_new_tokens=500
)
result = tokenizer.decode(outputs[0]).replace(formatted_text, "")
st.markdown(result)
if 'result_done' not in st.session_state or not st.session_state.result_done:
st.session_state['result_done'] = True
st.session_state['previous_state'] = result
else:
if 'result_done' in st.session_state and st.session_state.result_done:
st.markdown(st.session_state.previous_state)
if 'result_done' in st.session_state and st.session_state.result_done:
with st.form(key='ask_more'):
col1, col2 = st.columns([10, 1])
text_input = col1.text_input(label='Ask more question')
with col2:
st.text('')
st.text('')
submit_button = st.form_submit_button(label='Submit')
if submit_button:
with st.spinner('Generating...'):
# formatted_text = f"[START_AMINO]{text_input}[END_AMINO]"
formatted_text = f"Q:{text_input}\n\nA:\n\n"
input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids=input_ids,
max_length=len(formatted_text) + 500,
do_sample=True,
top_k=40,
num_beams=1,
num_return_sequences=1
)
result = tokenizer.decode(outputs[0]).replace(formatted_text, "")
st.markdown(result)