aburnazyan
defs
335b264
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "aburnazy/opt-350m-hy"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_text(prompt, temperature, top_k, top_p, max_length):
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(inputs, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, do_sample=True)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return text
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.inputs.Textbox(lines=2, default="Առավոտ էր: Արարատյան դաշտի լուսապայծառ "),
gr.inputs.Slider(minimum=0, maximum=1, step=0.01, default=0.8, label='Temperature'),
gr.inputs.Slider(minimum=0, maximum=100, step=1, default=20, label='Top K'),
gr.inputs.Slider(minimum=0, maximum=1, step=0.01, default=0.6, label='Top P'),
gr.inputs.Slider(minimum=10, maximum=1024, step=1, default=512, label='Max Length'),
],
outputs="text"
)
iface.launch()