File size: 8,707 Bytes
9f396af
 
22e9cdf
 
 
 
 
 
 
 
a19f8cb
 
 
 
 
 
 
 
 
 
9f396af
22e9cdf
 
9f396af
22e9cdf
 
9f396af
a19f8cb
22e9cdf
 
 
 
9f396af
 
310edfa
22e9cdf
 
cbf6e45
22e9cdf
 
 
 
a19f8cb
22e9cdf
a19f8cb
22e9cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbf6e45
22e9cdf
 
 
310edfa
22e9cdf
 
 
9f396af
22e9cdf
 
 
 
 
9f396af
22e9cdf
 
 
 
 
 
 
9f396af
22e9cdf
 
 
 
9f396af
a19f8cb
 
 
 
 
 
 
 
 
 
 
 
22e9cdf
 
9f396af
a19f8cb
9f396af
 
22e9cdf
9f396af
22e9cdf
 
9f396af
a19f8cb
22e9cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19f8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
22e9cdf
a19f8cb
22e9cdf
a19f8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f396af
 
22e9cdf
 
 
 
 
 
 
a19f8cb
 
22e9cdf
 
 
 
 
cbf6e45
22e9cdf
a40398f
cbf6e45
22e9cdf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import asyncio
import gradio as gr
from langchain_community.llms import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain.agents import create_react_agent, AgentExecutor
from langchain_core.tools import BaseTool
from typing import List
import yaml
import os
import json
import logging
from functools import lru_cache
import time
import pygments
from pygments.lexers import get_lexer_by_name
from pygments.formatters import HtmlFormatter

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def load_config():
    config_path = os.path.join(os.path.dirname(__file__), "config.yaml")
    try:
        with open(config_path, "r") as config_file:
            return yaml.safe_load(config_file)
    except FileNotFoundError:
        logger.warning("Config file not found. Using default configuration.")
        return {
            "model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "hf_api_token": os.environ.get("HUGGINGFACEHUB_API_TOKEN", "your_default_token_here")
        }

config = load_config()

class AgentInitializationError(Exception):
    pass

class CodeGenerationTool(BaseTool):
    name = "CodeGeneration"
    description = "Generates code based on a prompt"

    @lru_cache(maxsize=100)
    def _run(self, prompt: str) -> str:
        logger.info(f"Generating code for prompt: {prompt}")
        if "Flask app structure" in prompt:
            return self.generate_flask_app_structure()
        elif "binary search algorithm" in prompt:
            return self.generate_binary_search()
        elif "responsive navbar" in prompt:
            return self.generate_responsive_navbar()
        else:
            return f"Generated code placeholder for: {prompt}"

    async def _arun(self, prompt: str) -> str:
        return self._run(prompt)

    def generate_flask_app_structure(self):
        return """
# app.py
from flask import Flask, render_template

app = Flask(__name__)

@app.route('/')
def home():
    return render_template('index.html')

if __name__ == '__main__':
    app.run(debug=True)

# templates/index.html
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Flask App</title>
</head>
<body>
    <h1>Welcome to Flask!</h1>
</body>
</html>
"""

    def generate_binary_search(self):
        return """
def binary_search(arr, target):
    left, right = 0, len(arr) - 1
    
    while left <= right:
        mid = (left + right) // 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    
    return -1  # Target not found

# Example usage
sorted_array = [1, 3, 5, 7, 9, 11, 13, 15]
target = 7
result = binary_search(sorted_array, target)
print(f"Target {target} found at index: {result}")
"""

    def generate_responsive_navbar(self):
        return """
<!-- HTML -->
<nav class="navbar">
    <div class="navbar-logo">Logo</div>
    <ul class="navbar-links">
        <li><a href="#home">Home</a></li>
        <li><a href="#about">About</a></li>
        <li><a href="#services">Services</a></li>
        <li><a href="#contact">Contact</a></li>
    </ul>
    <div class="navbar-toggle">
        <span class="bar"></span>
        <span class="bar"></span>
        <span class="bar"></span>
    </div>
</nav>

<!-- CSS -->
<style>
.navbar {
    display: flex;
    justify-content: space-between;
    align-items: center;
    padding: 1rem 2rem;
    background-color: #333;
    color: white;
}

.navbar-logo {
    font-size: 1.5rem;
    font-weight: bold;
}

.navbar-links {
    display: flex;
    list-style: none;
}

.navbar-links li {
    margin-left: 1rem;
}

.navbar-links a {
    color: white;
    text-decoration: none;
}

.navbar-toggle {
    display: none;
    flex-direction: column;
    cursor: pointer;
}

.bar {
    width: 25px;
    height: 3px;
    background-color: white;
    margin: 3px 0;
}

@media (max-width: 768px) {
    .navbar-links {
        display: none;
        flex-direction: column;
        width: 100%;
        position: absolute;
        top: 60px;
        left: 0;
        background-color: #333;
    }

    .navbar-links.active {
        display: flex;
    }

    .navbar-links li {
        margin: 1rem 0;
    }

    .navbar-toggle {
        display: flex;
    }
}
</style>

<!-- JavaScript -->
<script>
document.querySelector('.navbar-toggle').addEventListener('click', function() {
    document.querySelector('.navbar-links').classList.toggle('active');
});
</script>
"""

class Agent:
    def __init__(self, name: str, description: str, tools: List[BaseTool]):
        self.name = name
        self.description = description
        try:
            self.llm = HuggingFaceEndpoint(
                repo_id=config["model"],
                task="text-generation",
                model_kwargs={"temperature": 0.7, "max_length": 1024},
                huggingfacehub_api_token=config["hf_api_token"]
            )
            
            self.prompt_template = PromptTemplate(
                template="You are {name}, {description}. Respond to the following: {input}",
                input_variables=["name", "description", "input"]
            )
            
            self.agent = create_react_agent(self.llm, tools, self.prompt_template)
            self.agent_executor = AgentExecutor(agent=self.agent, tools=tools, verbose=True)
        except Exception as e:
            logger.error(f"Failed to initialize agent: {e}")
            raise AgentInitializationError(f"Failed to initialize agent: {e}")

    async def run(self, input_text: str) -> str:
        try:
            result = await self.agent_executor.arun(input_text)
            return result
        except Exception as e:
            logger.error(f"Error in agent execution: {e}")
            return f"Error: {str(e)}"

class CodeFusion:
    def __init__(self):
        code_gen_tool = CodeGenerationTool()
        self.agents = [
            Agent("CodeFusion_Structure", "App Structure Designer", [code_gen_tool]),
            Agent("CodeFusion_Logic", "Logic Implementation Expert", [code_gen_tool]),
            Agent("CodeFusion_UI", "User Interface Designer", [code_gen_tool])
        ]

    async def run(self, input_text: str) -> str:
        results = []
        for agent in self.agents:
            result = await agent.run(input_text)
            results.append(f"{agent.name}: {result}")
        return "\n\n".join(results)

code_fusion = CodeFusion()

def highlight_code(code: str, language: str) -> str:
    lexer = get_lexer_by_name(language, stripall=True)
    formatter = HtmlFormatter(style="monokai")
    return pygments.highlight(code, lexer, formatter)

def save_code_to_file(code: str, filename: str) -> str:
    try:
        with open(filename, 'w') as f:
            f.write(code)
        return f"Code saved to {filename}"
    except Exception as e:
        logger.error(f"Error saving code to file: {e}")
        return f"Error saving code: {str(e)}"

async def chat(message, history):
    start_time = time.time()
    response = await code_fusion.run(message)
    end_time = time.time()
    
    # Highlight code in the response
    highlighted_response = response
    for lang in ['python', 'html', 'css', 'javascript']:
        if f"```{lang}" in response:
            code = response.split(f"```{lang}")[1].split("```")[0]
            highlighted_code = highlight_code(code, lang)
            highlighted_response = highlighted_response.replace(f"```{lang}{code}```", highlighted_code)
    
    # Save code to file if requested
    if "save code" in message.lower():
        filename = f"generated_code_{int(time.time())}.py"
        save_result = save_code_to_file(response, filename)
        highlighted_response += f"\n\n{save_result}"
    
    execution_time = end_time - start_time
    highlighted_response += f"\n\nExecution time: {execution_time:.2f} seconds"
    
    return highlighted_response

async def main():
    iface = gr.ChatInterface(
        fn=chat,
        title="CodeFusion AI",
        description="Your AI-powered coding assistant",
        examples=[
            "Create a basic Flask app structure",
            "Implement a binary search algorithm in Python",
            "Design a responsive navbar using HTML and CSS",
            "Generate a simple REST API using Flask and save the code"
        ],
        retry_btn=None,
        undo_btn="Delete Previous",
        clear_btn="Clear",
    )

    await iface.launch()

if __name__ == "__main__":
    asyncio.run(main())