File size: 18,564 Bytes
c4177ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074e33f
c4177ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074e33f
c4177ba
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import os
import subprocess
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO

# Set Hugging Face repository URL and project root path
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/Mistri"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"

# Global state for session management
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
    st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
    st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
    st.session_state.available_agents = []
if 'current_state' not in st.session_state:
    st.session_state.current_state = {
        'toolbox': {},
        'workspace_chat': {}
    }

# Define AIAgent class
class AIAgent:
    def __init__(self, name, description, skills):
        self.name = name
        self.description = description
        self.skills = skills

    def create_agent_prompt(self):
        skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
        agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
        """
        return agent_prompt

    def autonomous_build(self, chat_history, workspace_projects):
        """
        Autonomous build logic based on chat history and workspace projects.
        """
        summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
        summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])

        # Use a Hugging Face model for more advanced logic (e.g., a summarization model)
        summarizer = pipeline("summarization")
        next_step = summarizer(summary, max_length=50, min_length=25, do_sample=False)[0]['summary_text']

        return summary, next_step

# Function to save an agent's prompt to a file and commit to the Hugging Face repository
def save_agent_to_file(agent):
    """Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
    if not os.path.exists(AGENT_DIRECTORY):
        os.makedirs(AGENT_DIRECTORY)
    file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
    config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
    with open(file_path, "w") as file:
        file.write(agent.create_agent_prompt())
    with open(config_path, "w") as file:
        file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
    st.session_state.available_agents.append(agent.name)

    commit_and_push_changes(f"Add agent {agent.name}")

# Function to load an agent's prompt from a file
def load_agent_prompt(agent_name):
    """Loads an agent prompt from a file."""
    file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
    if os.path.exists(file_path):
        with open(file_path, "r") as file:
            agent_prompt = file.read()
        return agent_prompt
    else:
        return None

# Function to create an agent from text input
def create_agent_from_text(name, text):
    skills = text.split('\n')
    agent = AIAgent(name, "AI agent created from text input.", skills)
    save_agent_to_file(agent)
    return agent.create_agent_prompt()

# Chat interface using a selected agent
def chat_interface_with_agent(input_text, agent_name):
    agent_prompt = load_agent_prompt(agent_name)
    if agent_prompt is None:
        return f"Agent {agent_name} not found."

    # Load GPT-2 model
    model_name = "gpt2"
    try:
        model = AutoModelForCausalLM.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    # Combine agent prompt with user input
    combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"

    # Truncate input text for model length limit
    max_input_length = 900
    input_ids = tokenizer.encode(combined_input, return_tensors="pt")
    if input_ids.shape[1] > max_input_length:
        input_ids = input_ids[:, :max_input_length]

    # Generate chatbot response
    outputs = model.generate(
        input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id  # Set pad_token_id to eos_token_id
    )
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Workspace interface for creating projects
def workspace_interface(project_name):
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if not os.path.exists(PROJECT_ROOT):
        os.makedirs(PROJECT_ROOT)
    if not os.path.exists(project_path):
        os.makedirs(project_path)
        st.session_state.workspace_projects[project_name] = {"files": []}
        st.session_state.current_state['workspace_chat']['project_name'] = project_name
        commit_and_push_changes(f"Create project {project_name}")
        return f"Project {project_name} created successfully."
    else:
        return f"Project {project_name} already exists."

# Function to add code to the workspace
def add_code_to_workspace(project_name, code, file_name):
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if os.path.exists(project_path):
        file_path = os.path.join(project_path, file_name)
        with open(file_path, "w") as file:
            file.write(code)
        st.session_state.workspace_projects[project_name]["files"].append(file_name)
        st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
        commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
        return f"Code added to {file_name} in project {project_name} successfully."
    else:
        return f"Project {project_name} does not exist."

# Terminal interface with optional project context
def terminal_interface(command, project_name=None):
    if project_name:
        project_path = os.path.join(PROJECT_ROOT, project_name)
        if not os.path.exists(project_path):
            return f"Project {project_name} does not exist."
        result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
    else:
        result = subprocess.run(command, shell=True, capture_output=True, text=True)
    if result.returncode == 0:
        st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
        return result.stdout
    else:
        st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
        return result.stderr

# Code editor interface for formatting and linting
def code_editor_interface(code):
    try:
        formatted_code = black.format_str(code, mode=black.FileMode())
    except black.NothingChanged:
        formatted_code = code
    result = StringIO()
    sys.stdout = result
    sys.stderr = result
    (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
    sys.stdout = sys.stdout
    sys.stderr = sys.stderr
    lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
    st.session_state.current_state['toolbox']['formatted_code'] = formatted_code
    st.session_state.current_state['toolbox']['lint_message'] = lint_message
    return formatted_code, lint_message

# Function to summarize text using a summarization pipeline
def summarize_text(text):
    summarizer = pipeline("summarization")
    summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
    st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
    return summary[0]['summary_text']

# Function to perform sentiment analysis using a sentiment analysis pipeline
def sentiment_analysis(text):
    analyzer = pipeline("sentiment-analysis")
    sentiment = analyzer(text)
    st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
    return sentiment[0]

# Function to translate code using the OpenAI API
def translate_code(code, input_language, output_language):
    # Define a dictionary to map programming languages to their corresponding file extensions
    language_extensions = {
        # ignore the specific languages right now, and continue to EOF
    }

    # Add code to handle edge cases such as invalid input and unsupported programming languages
    if input_language not in language_extensions:
        raise ValueError(f"Invalid input language: {input_language}")
    if output_language not in language_extensions:
        raise ValueError(f"Invalid output language: {output_language}")

    # Use the dictionary to map the input and output languages to their corresponding file extensions
    input_extension = language_extensions[input_language]
    output_extension = language_extensions[output_language]

    # Translate the code using the OpenAI API
    prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert software developer."},
            {"role": "user", "content": prompt}
        ]
    )
    translated_code = response.choices[0].message['content'].strip()

    # Return the translated code
    translated_code = response.choices[0].message['content'].strip()
    st.session_state.current_state['toolbox']['translated_code'] = translated_code
    return translated_code

# Function to generate code based on a code idea using the OpenAI API
def generate_code(code_idea):
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an expert software developer."},
            {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
        ]
    )
    generated_code = response.choices[0].message['content'].strip()
    st.session_state.current_state['toolbox']['generated_code'] = generated_code
    return generated_code

# Function to commit and push changes to the Hugging Face repository
def commit_and_push_changes(commit_message):
    """Commits and pushes changes to the Hugging Face repository."""
    commands = [
        "git add .",
        f"git commit -m '{commit_message}'",
        "git push"
    ]
    for command in commands:
        result = subprocess.run(command, shell=True, capture_output=True, text=True)
        if result.returncode != 0:
            st.error(f"Error executing command '{command}': {result.stderr}")
            break

# Streamlit App
st.title("AI Agent Creator")

# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])

# AI Agent Creator
if app_mode == "AI Agent Creator":
    st.header("Create an AI Agent from Text")

    st.subheader("From Text")
    agent_name = st.text_input("Enter agent name:")
    text_input = st.text_area("Enter skills (one per line):")
    if st.button("Create Agent"):
        agent_prompt = create_agent_from_text(agent_name, text_input)
        st.success(f"Agent '{agent_name}' created and saved successfully.")
        st.session_state.available_agents.append(agent_name)

# Tool Box
elif app_mode == "Tool Box":
    st.header("AI-Powered Tools")

    # Chat Interface
    st.subheader("Chat with CodeCraft")
    chat_input = st.text_area("Enter your message:")
    if st.button("Send"):
        if chat_input.startswith("@"):
            agent_name = chat_input.split(" ")[0][1:]  # Extract agent_name from @agent_name
            chat_input = " ".join(chat_input.split(" ")[1:])  # Remove agent_name from input
            chat_response = chat_interface_with_agent(chat_input, agent_name)
        else:
            chat_response = chat_interface(chat_input)
        st.session_state.chat_history.append((chat_input, chat_response))
        st.write(f"CodeCraft: {chat_response}")

    # Terminal Interface
    st.subheader("Terminal")
    terminal_input = st.text_input("Enter a command:")
    if st.button("Run"):
        terminal_output = terminal_interface(terminal_input)
        st.session_state.terminal_history.append((terminal_input, terminal_output))
        st.code(terminal_output, language="bash")

    # Code Editor Interface
    st.subheader("Code Editor")
    code_editor = st.text_area("Write your code:", height=300)
    if st.button("Format & Lint"):
        formatted_code, lint_message = code_editor_interface(code_editor)
        st.code(formatted_code, language="python")
        st.info(lint_message)

    # Text Summarization Tool
    st.subheader("Summarize Text")
    text_to_summarize = st.text_area("Enter text to summarize:")
    if st.button("Summarize"):
        summary = summarize_text(text_to_summarize)
        st.write(f"Summary: {summary}")

    # Sentiment Analysis Tool
    st.subheader("Sentiment Analysis")
    sentiment_text = st.text_area("Enter text for sentiment analysis:")
    if st.button("Analyze Sentiment"):
        sentiment = sentiment_analysis(sentiment_text)
        st.write(f"Sentiment: {sentiment}")

    # Text Translation Tool (Code Translation)
    st.subheader("Translate Code")
    code_to_translate = st.text_area("Enter code to translate:")
    source_language = st.text_input("Enter source language (e.g. 'Python'):")
    target_language = st.text_input("Enter target language (e.g. 'JavaScript'):")
    if st.button("Translate Code"):
        # Use a Hugging Face translation model
        translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") 
        translated_code = translator(code_to_translate, target_lang=target_language)[0]['translation_text']
        st.code(translated_code, language=target_language.lower())

    # Code Generation
    st.subheader("Code Generation")
    code_idea = st.text_input("Enter your code idea:")
    if st.button("Generate Code"):
        # Use a Hugging Face code generation model
        generator = pipeline("text-generation", model="bigscience/T0_3B") 
        generated_code = generator(code_idea, max_length=100, num_return_sequences=1, do_sample=True)[0]['generated_text']
        st.code(generated_code, language="python")

    # Display Preset Commands
    st.subheader("Preset Commands")
    preset_commands = {
        "Create a new project": "create_project('project_name')",
        "Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
        "Run terminal command": "terminal_interface('command', 'project_name')",
        "Generate code": "generate_code('code_idea')",
        "Summarize text": "summarize_text('text')",
        "Analyze sentiment": "sentiment_analysis('text')",
        "Translate code": "translate_code('code', 'source_language', 'target_language')",
    }
    for command_name, command in preset_commands.items():
        st.write(f"{command_name}: `{command}`")

# Workspace Chat App
elif app_mode == "Workspace Chat App":
    st.header("Workspace Chat App")

    # Project Workspace Creation
    st.subheader("Create a New Project")
    project_name = st.text_input("Enter project name:")
    if st.button("Create Project"):
        workspace_status = workspace_interface(project_name)
        st.success(workspace_status)

    # Add Code to Workspace
    st.subheader("Add Code to Workspace")
    code_to_add = st.text_area("Enter code to add to workspace:")
    file_name = st.text_input("Enter file name (e.g. 'app.py'):")
    if st.button("Add Code"):
        add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
        st.success(add_code_status)

    # Terminal Interface with Project Context
    st.subheader("Terminal (Workspace Context)")
    terminal_input = st.text_input("Enter a command within the workspace:")
    if st.button("Run Command"):
        terminal_output = terminal_interface(terminal_input, project_name)
        st.code(terminal_output, language="bash")

    # Chat Interface for Guidance
    st.subheader("Chat with CodeCraft for Guidance")
    chat_input = st.text_area("Enter your message for guidance:")
    if st.button("Get Guidance"):
        chat_response = chat_interface(chat_input)
        st.session_state.chat_history.append((chat_input, chat_response))
        st.write(f"CodeCraft: {chat_response}")

    # Display Chat History
    st.subheader("Chat History")
    for user_input, response in st.session_state.chat_history:
        st.write(f"User: {user_input}")
        st.write(f"CodeCraft: {response}")

    # Display Terminal History
    st.subheader("Terminal History")
    for command, output in st.session_state.terminal_history:
        st.write(f"Command: {command}")
        st.code(output, language="bash")

    # Display Projects and Files
    st.subheader("Workspace Projects")
    for project, details in st.session_state.workspace_projects.items():
        st.write(f"Project: {project}")
        for file in details['files']:
            st.write(f"  - {file}")

    # Chat with AI Agents
    st.subheader("Chat with AI Agents")
    selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
    agent_chat_input = st.text_area("Enter your message for the agent:")
    if st.button("Send to Agent"):
        agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
        st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
        st.write(f"{selected_agent}: {agent_chat_response}")

    # Automate Build Process
    st.subheader("Automate Build Process")
    if st.button("Automate"):
        agent = AIAgent(selected_agent, "", [])  # Load the agent without skills for now
        summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
        st.write("Autonomous Build Summary:")
        st.write(summary)
        st.write("Next Step:")
        st.write(next_step)

# Display current state for debugging
st.sidebar.subheader("Current State")
st.sidebar.json(st.session_state.current_state)