acecalisto3 commited on
Commit
2de7ebe
·
verified ·
1 Parent(s): a96846f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -38
app.py CHANGED
@@ -7,6 +7,15 @@ from io import StringIO
7
  import os
8
  import json
9
  from streamlit_ace import st_ace
 
 
 
 
 
 
 
 
 
10
 
11
  # Set Hugging Face repository URL and project root path
12
  HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/Mistri"
@@ -28,6 +37,16 @@ if 'current_state' not in st.session_state:
28
  'workspace_chat': {}
29
  }
30
 
 
 
 
 
 
 
 
 
 
 
31
  # Define AIAgent class
32
  class AIAgent:
33
  def __init__(self, name, description, skills):
@@ -47,6 +66,13 @@ I am confident that I can leverage my expertise to assist you in developing and
47
  def autonomous_build(self, chat_history, workspace_projects):
48
  """
49
  Autonomous build logic based on chat history and workspace projects.
 
 
 
 
 
 
 
50
  """
51
  summary = "Chat History:\n" + '\n'.join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
52
  summary += "\n\nWorkspace Projects:\n" + '\n'.join([f"{p}: {', '.join(ws_projects.keys())}" for p, ws_projects in workspace_projects.items()])
@@ -97,34 +123,48 @@ def create_agent_from_text(name, text):
97
 
98
  # Chat interface using a selected agent
99
  def chat_interface_with_agent(input_text, agent_name):
 
 
 
 
 
 
 
 
 
100
  agent_prompt = load_agent_prompt(agent_name)
101
  if agent_prompt is None:
102
  return f"Agent {agent_name} not found."
103
 
104
- # Load GPT-2 model
105
- model_name = "gpt2"
106
- try:
107
- model = AutoModelForCausalLM.from_pretrained(model_name)
108
- tokenizer = AutoTokenizer.from_pretrained(model_name)
109
- generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
110
- except EnvironmentError as e:
111
- return f"Error loading model: {e}"
112
-
113
  # Combine agent prompt with user input
114
  combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
115
 
116
- # Truncate input text for model length limit
117
- max_input_length = 900
118
- input_ids = tokenizer.encode(combined_input, return_tensors="pt")
119
- if input_ids.shape[1] > max_input_length:
120
- input_ids = input_ids[:, :max_input_length]
121
-
122
  # Generate chatbot response
123
- chatbot_response = generator(input_ids, max_length=150, min_length=30, do_sample=True)[0]['generated_text']
124
  return chatbot_response
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  # Workspace interface for creating projects
127
  def workspace_interface(project_name):
 
 
 
 
 
 
 
128
  project_path = os.path.join(PROJECT_ROOT, project_name)
129
  if not os.path.exists(PROJECT_ROOT):
130
  os.makedirs(PROJECT_ROOT)
@@ -138,6 +178,15 @@ def workspace_interface(project_name):
138
 
139
  # Function to add code to the workspace
140
  def add_code_to_workspace(project_name, code, file_name):
 
 
 
 
 
 
 
 
 
141
  project_path = os.path.join(PROJECT_ROOT, project_name)
142
  if os.path.exists(project_path):
143
  file_path = os.path.join(project_path, file_name)
@@ -152,6 +201,14 @@ def add_code_to_workspace(project_name, code, file_name):
152
 
153
  # Terminal interface with optional project context
154
  def terminal_interface(command, project_name=None):
 
 
 
 
 
 
 
 
155
  if project_name:
156
  project_path = os.path.join(PROJECT_ROOT, project_name)
157
  if not os.path.exists(project_path):
@@ -165,9 +222,16 @@ def terminal_interface(command, project_name=None):
165
  else:
166
  st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
167
  return result.stderr
168
-
169
  # Code editor interface for formatting and linting
170
  def code_editor_interface(code):
 
 
 
 
 
 
 
171
  try:
172
  formatted_code = black.format_str(code, mode=black.FileMode())
173
  except black.NothingChanged:
@@ -185,6 +249,13 @@ def code_editor_interface(code):
185
 
186
  # Function to summarize text using a summarization pipeline
187
  def summarize_text(text):
 
 
 
 
 
 
 
188
  summarizer = pipeline("summarization")
189
  summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
190
  st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
@@ -192,13 +263,29 @@ def summarize_text(text):
192
 
193
  # Function to perform sentiment analysis using a sentiment analysis pipeline
194
  def sentiment_analysis(text):
 
 
 
 
 
 
 
195
  analyzer = pipeline("sentiment-analysis")
196
  sentiment = analyzer(text)
197
  st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
198
  return sentiment[0]
199
 
200
- # Function to translate code using the OpenAI API
201
  def translate_code(code, input_language, output_language):
 
 
 
 
 
 
 
 
 
202
  # Define a dictionary to map programming languages to their corresponding file extensions
203
  language_extensions = {
204
  "Python": ".py",
@@ -218,31 +305,25 @@ def translate_code(code, input_language, output_language):
218
  input_extension = language_extensions[input_language]
219
  output_extension = language_extensions[output_language]
220
 
221
- # Translate the code using the OpenAI API
222
- prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
223
- response = openai.ChatCompletion.create(
224
- model="gpt-4",
225
- messages=[
226
- {"role": "system", "content": "You are an expert software developer."},
227
- {"role": "user", "content": prompt}
228
- ]
229
- )
230
- translated_code = response.choices[0].message['content'].strip()
231
 
232
  # Return the translated code
233
  st.session_state.current_state['toolbox']['translated_code'] = translated_code
234
  return translated_code
235
 
236
- # Function to generate code based on a code idea using the OpenAI API
237
  def generate_code(code_idea):
238
- response = openai.ChatCompletion.create(
239
- model="gpt-4",
240
- messages=[
241
- {"role": "system", "content": "You are an expert software developer."},
242
- {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
243
- ]
244
- )
245
- generated_code = response.choices[0].message['content'].strip()
 
 
246
  st.session_state.current_state['toolbox']['generated_code'] = generated_code
247
  return generated_code
248
 
@@ -355,7 +436,7 @@ elif app_mode == "Tool Box":
355
  }
356
  for command_name, command in preset_commands.items():
357
  st.write(f"{command_name}: `{command}`")
358
-
359
  # Workspace Chat App
360
  elif app_mode == "Workspace Chat App":
361
  st.header("Workspace Chat App")
 
7
  import os
8
  import json
9
  from streamlit_ace import st_ace
10
+ from agent import (
11
+ AppType,
12
+ createLlamaPrompt,
13
+ createSpace,
14
+ isPythonOrGradioAppPrompt,
15
+ isReactAppPrompt,
16
+ isStreamlitAppPrompt,
17
+ generateFiles,
18
+ )
19
 
20
  # Set Hugging Face repository URL and project root path
21
  HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/Mistri"
 
37
  'workspace_chat': {}
38
  }
39
 
40
+ # Load Hugging Face models for code generation, translation, and conversation
41
+ try:
42
+ code_generator = pipeline("text-generation", model="Salesforce/codegen-350M-mono")
43
+ translator = pipeline("translation_xx_to_yy", model="Helsinki-NLP/opus-mt-en-fr") # Replace with appropriate language pair
44
+ conversational_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
45
+ conversational_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
46
+ conversational_generator = pipeline("text-generation", model=conversational_model, tokenizer=conversational_tokenizer)
47
+ except EnvironmentError as e:
48
+ st.error(f"Error loading Hugging Face models: {e}")
49
+
50
  # Define AIAgent class
51
  class AIAgent:
52
  def __init__(self, name, description, skills):
 
66
  def autonomous_build(self, chat_history, workspace_projects):
67
  """
68
  Autonomous build logic based on chat history and workspace projects.
69
+ This function analyzes the chat history and workspace projects to determine the next steps in the development process.
70
+ It uses sentiment analysis to gauge the user's satisfaction and summarization to extract key information.
71
+ Args:
72
+ chat_history (list): A list of tuples containing user input and agent responses.
73
+ workspace_projects (dict): A dictionary of projects and their associated files.
74
+ Returns:
75
+ tuple: A tuple containing a summary of the current state and the suggested next step.
76
  """
77
  summary = "Chat History:\n" + '\n'.join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
78
  summary += "\n\nWorkspace Projects:\n" + '\n'.join([f"{p}: {', '.join(ws_projects.keys())}" for p, ws_projects in workspace_projects.items()])
 
123
 
124
  # Chat interface using a selected agent
125
  def chat_interface_with_agent(input_text, agent_name):
126
+ """
127
+ Provides a chat interface using a selected AI agent.
128
+ Loads the agent's prompt and uses a conversational model to generate responses.
129
+ Args:
130
+ input_text (str): The user's input text.
131
+ agent_name (str): The name of the selected AI agent.
132
+ Returns:
133
+ str: The AI agent's response.
134
+ """
135
  agent_prompt = load_agent_prompt(agent_name)
136
  if agent_prompt is None:
137
  return f"Agent {agent_name} not found."
138
 
 
 
 
 
 
 
 
 
 
139
  # Combine agent prompt with user input
140
  combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
141
 
 
 
 
 
 
 
142
  # Generate chatbot response
143
+ chatbot_response = conversational_generator(combined_input, max_length=150, min_length=30, do_sample=True)[0]['generated_text']
144
  return chatbot_response
145
 
146
+ # Chat interface (default)
147
+ def chat_interface(input_text):
148
+ """
149
+ Provides a general chat interface using a conversational model.
150
+ Args:
151
+ input_text (str): The user's input text.
152
+ Returns:
153
+ str: The chatbot's response.
154
+ """
155
+ # Generate response
156
+ response = conversational_generator(input_text, max_length=150, min_length=30, do_sample=True)[0]['generated_text']
157
+ return response
158
+
159
  # Workspace interface for creating projects
160
  def workspace_interface(project_name):
161
+ """
162
+ Creates a new project workspace.
163
+ Args:
164
+ project_name (str): The name of the project.
165
+ Returns:
166
+ str: A message indicating the status of the project creation.
167
+ """
168
  project_path = os.path.join(PROJECT_ROOT, project_name)
169
  if not os.path.exists(PROJECT_ROOT):
170
  os.makedirs(PROJECT_ROOT)
 
178
 
179
  # Function to add code to the workspace
180
  def add_code_to_workspace(project_name, code, file_name):
181
+ """
182
+ Adds code to a specified file in a project workspace.
183
+ Args:
184
+ project_name (str): The name of the project.
185
+ code (str): The code to be added.
186
+ file_name (str): The name of the file.
187
+ Returns:
188
+ str: A message indicating the status of the code addition.
189
+ """
190
  project_path = os.path.join(PROJECT_ROOT, project_name)
191
  if os.path.exists(project_path):
192
  file_path = os.path.join(project_path, file_name)
 
201
 
202
  # Terminal interface with optional project context
203
  def terminal_interface(command, project_name=None):
204
+ """
205
+ Executes a terminal command with optional project context.
206
+ Args:
207
+ command (str): The terminal command to execute.
208
+ project_name (str, optional): The name of the project to execute the command in. Defaults to None.
209
+ Returns:
210
+ str: The output of the terminal command.
211
+ """
212
  if project_name:
213
  project_path = os.path.join(PROJECT_ROOT, project_name)
214
  if not os.path.exists(project_path):
 
222
  else:
223
  st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
224
  return result.stderr
225
+
226
  # Code editor interface for formatting and linting
227
  def code_editor_interface(code):
228
+ """
229
+ Provides a code editor interface with formatting and linting capabilities.
230
+ Args:
231
+ code (str): The code to be edited.
232
+ Returns:
233
+ tuple: A tuple containing the formatted code and any linting messages.
234
+ """
235
  try:
236
  formatted_code = black.format_str(code, mode=black.FileMode())
237
  except black.NothingChanged:
 
249
 
250
  # Function to summarize text using a summarization pipeline
251
  def summarize_text(text):
252
+ """
253
+ Summarizes a given text using a Hugging Face summarization pipeline.
254
+ Args:
255
+ text (str): The text to be summarized.
256
+ Returns:
257
+ str: The summarized text.
258
+ """
259
  summarizer = pipeline("summarization")
260
  summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
261
  st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
 
263
 
264
  # Function to perform sentiment analysis using a sentiment analysis pipeline
265
  def sentiment_analysis(text):
266
+ """
267
+ Performs sentiment analysis on a given text using a Hugging Face sentiment analysis pipeline.
268
+ Args:
269
+ text (str): The text to be analyzed.
270
+ Returns:
271
+ dict: The sentiment analysis result.
272
+ """
273
  analyzer = pipeline("sentiment-analysis")
274
  sentiment = analyzer(text)
275
  st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
276
  return sentiment[0]
277
 
278
+ # Function to translate code using the Hugging Face API
279
  def translate_code(code, input_language, output_language):
280
+ """
281
+ Translates code from one programming language to another using a Hugging Face translation pipeline.
282
+ Args:
283
+ code (str): The code to be translated.
284
+ input_language (str): The source programming language.
285
+ output_language (str): The target programming language.
286
+ Returns:
287
+ str: The translated code.
288
+ """
289
  # Define a dictionary to map programming languages to their corresponding file extensions
290
  language_extensions = {
291
  "Python": ".py",
 
305
  input_extension = language_extensions[input_language]
306
  output_extension = language_extensions[output_language]
307
 
308
+ # Translate the code using the Hugging Face API
309
+ translated_code = translator(code, max_length=1024)[0]['translation_text']
 
 
 
 
 
 
 
 
310
 
311
  # Return the translated code
312
  st.session_state.current_state['toolbox']['translated_code'] = translated_code
313
  return translated_code
314
 
315
+ # Function to generate code based on a code idea using the Hugging Face API
316
  def generate_code(code_idea):
317
+ """
318
+ Generates code based on a given code idea using a Hugging Face code generation pipeline.
319
+ Args:
320
+ code_idea (str): The code idea or description.
321
+ Returns:
322
+ str: The generated code.
323
+ """
324
+ # Generate code using the Hugging Face API
325
+ generated_code = code_generator(f"```python\n{code_idea}\n```", max_length=512)[0]['generated_text']
326
+
327
  st.session_state.current_state['toolbox']['generated_code'] = generated_code
328
  return generated_code
329
 
 
436
  }
437
  for command_name, command in preset_commands.items():
438
  st.write(f"{command_name}: `{command}`")
439
+
440
  # Workspace Chat App
441
  elif app_mode == "Workspace Chat App":
442
  st.header("Workspace Chat App")