Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,159 +1,72 @@
|
|
1 |
import os
|
2 |
-
import sys
|
3 |
import subprocess
|
4 |
-
import base64
|
5 |
-
import json
|
6 |
-
from io import StringIO
|
7 |
-
from typing import Dict, List
|
8 |
-
|
9 |
import streamlit as st
|
10 |
-
import
|
11 |
-
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, HfApi
|
12 |
-
from pylint import lint
|
13 |
import black
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
extensions = [
|
19 |
-
Extension("app", ["app.pyx"]),
|
20 |
-
]
|
21 |
-
|
22 |
-
setup(
|
23 |
-
ext_modules=cythonize(extensions),
|
24 |
-
)
|
25 |
-
|
26 |
-
# Add your Hugging Face API token here
|
27 |
-
hf_token = st.secrets["huggingface"]
|
28 |
-
|
29 |
-
# Constants
|
30 |
-
PROJECT_ROOT = "./projects"
|
31 |
-
AGENT_DIRECTORY = "./agents"
|
32 |
-
AVAILABLE_CODE_GENERATIVE_MODELS = ["codegen", "gpt-neo", "codeparrot"]
|
33 |
|
34 |
-
# Global state
|
35 |
-
if
|
36 |
st.session_state.chat_history = []
|
37 |
-
if
|
38 |
st.session_state.terminal_history = []
|
39 |
-
if
|
40 |
st.session_state.workspace_projects = {}
|
41 |
-
if
|
42 |
st.session_state.available_agents = []
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
|
49 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
50 |
-
return rag_retriever, chat_model, tokenizer
|
51 |
-
|
52 |
-
rag_retriever, chat_model, tokenizer = load_models()
|
53 |
-
|
54 |
-
def process_input(user_input: str) -> str:
|
55 |
-
# Input pipeline: Tokenize and preprocess user input
|
56 |
-
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
57 |
-
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
|
58 |
-
|
59 |
-
# RAG model: Generate response
|
60 |
-
with torch.no_grad():
|
61 |
-
rag_output = rag_retriever(question=user_input, context=user_input)
|
62 |
-
rag_answer = rag_output['answer']
|
63 |
-
|
64 |
-
# Chat model: Refine response
|
65 |
-
chat_input = tokenizer(rag_answer, return_tensors="pt")
|
66 |
-
with torch.no_grad():
|
67 |
-
chat_output = chat_model.generate(**chat_input)
|
68 |
-
refined_response = tokenizer.decode(chat_output[0], skip_special_tokens=True)
|
69 |
-
|
70 |
-
return refined_response
|
71 |
|
72 |
class AIAgent:
|
73 |
-
def __init__(self, name
|
74 |
self.name = name
|
75 |
self.description = description
|
76 |
self.skills = skills
|
77 |
-
self._hf_api = hf_api
|
78 |
-
self._hf_token = hf_token
|
79 |
-
|
80 |
-
@property
|
81 |
-
def hf_api(self):
|
82 |
-
if not self._hf_api and self.has_valid_hf_token():
|
83 |
-
self._hf_api = HfApi(token=self._hf_token)
|
84 |
-
return self._hf_api
|
85 |
-
|
86 |
-
def has_valid_hf_token(self):
|
87 |
-
return bool(self._hf_token)
|
88 |
|
89 |
def create_agent_prompt(self):
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
|
96 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
97 |
|
98 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
99 |
-
if not os.path.exists(project_path):
|
100 |
-
os.makedirs(project_path)
|
101 |
-
|
102 |
-
requirements_file = os.path.join(project_path, "requirements.txt")
|
103 |
-
if not os.path.exists(requirements_file):
|
104 |
-
with open(requirements_file, "w") as f:
|
105 |
-
f.write("# Add your project's dependencies here\n")
|
106 |
-
|
107 |
-
app_file = os.path.join(project_path, "app.py")
|
108 |
-
if not os.path.exists(app_file):
|
109 |
-
with open(app_file, "w") as f:
|
110 |
-
f.write("# Your project's main application logic goes here\n")
|
111 |
-
|
112 |
-
if "create a gui" in summary.lower():
|
113 |
-
gui_code = generate_code(
|
114 |
-
"Create a simple GUI for this application", selected_model)
|
115 |
-
with open(app_file, "a") as f:
|
116 |
-
f.write(gui_code)
|
117 |
-
|
118 |
-
build_command = "pip install -r requirements.txt && python app.py"
|
119 |
-
try:
|
120 |
-
result = subprocess.run(
|
121 |
-
build_command, shell=True, capture_output=True, text=True, cwd=project_path)
|
122 |
-
st.write(f"Build Output:\n{result.stdout}")
|
123 |
-
if result.stderr:
|
124 |
-
st.error(f"Build Errors:\n{result.stderr}")
|
125 |
-
except Exception as e:
|
126 |
-
st.error(f"Build Error: {e}")
|
127 |
-
|
128 |
return summary, next_step
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
st.error("Invalid Hugging Face token. Please check your configuration.")
|
133 |
-
return
|
134 |
-
|
135 |
-
try:
|
136 |
-
files = get_built_space_files()
|
137 |
-
create_space_on_hugging_face(self.hf_api, self.name, self.description, True, files)
|
138 |
-
st.success(f"Successfully deployed {self.name} to Hugging Face Spaces!")
|
139 |
-
except Exception as e:
|
140 |
-
st.error(f"Error deploying to Hugging Face Spaces: {str(e)}")
|
141 |
-
|
142 |
-
def get_built_space_files() -> Dict[str, str]:
|
143 |
-
return {
|
144 |
-
"app.py": "# Your Streamlit app code here",
|
145 |
-
"requirements.txt": "streamlit\ntransformers"
|
146 |
-
}
|
147 |
-
|
148 |
-
def save_agent_to_file(agent: AIAgent):
|
149 |
if not os.path.exists(AGENT_DIRECTORY):
|
150 |
os.makedirs(AGENT_DIRECTORY)
|
151 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
|
|
152 |
with open(file_path, "w") as file:
|
153 |
file.write(agent.create_agent_prompt())
|
|
|
|
|
154 |
st.session_state.available_agents.append(agent.name)
|
155 |
|
156 |
-
|
|
|
|
|
|
|
157 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
158 |
if os.path.exists(file_path):
|
159 |
with open(file_path, "r") as file:
|
@@ -162,127 +75,177 @@ def load_agent_prompt(agent_name: str) -> str:
|
|
162 |
else:
|
163 |
return None
|
164 |
|
165 |
-
def create_agent_from_text(name
|
166 |
-
skills = text.split(
|
167 |
agent = AIAgent(name, "AI agent created from text input.", skills)
|
168 |
save_agent_to_file(agent)
|
169 |
return agent.create_agent_prompt()
|
170 |
|
171 |
-
|
|
|
172 |
agent_prompt = load_agent_prompt(agent_name)
|
173 |
if agent_prompt is None:
|
174 |
return f"Agent {agent_name} not found."
|
175 |
|
176 |
-
|
|
|
177 |
try:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
except Exception as e:
|
183 |
return f"Error loading model: {e}"
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
if project_name:
|
187 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
188 |
if not os.path.exists(project_path):
|
189 |
return f"Project {project_name} does not exist."
|
190 |
-
result = subprocess.run(
|
191 |
-
command, shell=True, capture_output=True, text=True, cwd=project_path)
|
192 |
else:
|
193 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
formatted_code = code
|
201 |
-
|
202 |
-
result = StringIO()
|
203 |
-
sys.stdout = result
|
204 |
-
sys.stderr = result
|
205 |
-
|
206 |
-
lint.Run(['--rcfile=/dev/null', '-'], exit=False)
|
207 |
-
lint_message = result.getvalue()
|
208 |
-
|
209 |
-
sys.stdout = sys.__stdout__
|
210 |
-
sys.stderr = sys.__stderr__
|
211 |
-
|
212 |
-
return formatted_code, lint_message
|
213 |
|
214 |
-
def summarize_text(text
|
215 |
summarizer = pipeline("summarization")
|
216 |
-
summary = summarizer(text, max_length=
|
|
|
217 |
return summary[0]['summary_text']
|
218 |
|
219 |
-
def sentiment_analysis(text
|
220 |
analyzer = pipeline("sentiment-analysis")
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
return translated_code
|
228 |
|
229 |
-
def generate_code(code_idea
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
if not os.path.exists(project_path):
|
254 |
-
return f"Project '{project_name}' does not exist."
|
255 |
-
|
256 |
-
file_path = os.path.join(project_path, file_name)
|
257 |
-
with open(file_path, "w") as file:
|
258 |
-
file.write(code)
|
259 |
-
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
260 |
-
return f"Code added to '{file_name}' in project '{project_name}'."
|
261 |
-
|
262 |
-
def create_space_on_hugging_face(api, name, description, public, files, entrypoint="app.py"):
|
263 |
-
try:
|
264 |
-
repo = api.create_repo(name, exist_ok=True, private=not public)
|
265 |
-
for filename, content in files.items():
|
266 |
-
api.upload_file(
|
267 |
-
path_or_fileobj=content.encode(),
|
268 |
-
path_in_repo=filename,
|
269 |
-
repo_id=repo.repo_id,
|
270 |
-
repo_type="space",
|
271 |
-
)
|
272 |
-
return repo
|
273 |
-
except Exception as e:
|
274 |
-
st.error(f"Error creating Hugging Face Space: {str(e)}")
|
275 |
-
return None
|
276 |
|
277 |
# Streamlit App
|
278 |
st.title("AI Agent Creator")
|
279 |
|
280 |
# Sidebar navigation
|
281 |
st.sidebar.title("Navigation")
|
282 |
-
app_mode = st.sidebar.selectbox(
|
283 |
-
"Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
284 |
|
285 |
if app_mode == "AI Agent Creator":
|
|
|
286 |
st.header("Create an AI Agent from Text")
|
287 |
|
288 |
st.subheader("From Text")
|
@@ -294,23 +257,31 @@ if app_mode == "AI Agent Creator":
|
|
294 |
st.session_state.available_agents.append(agent_name)
|
295 |
|
296 |
elif app_mode == "Tool Box":
|
|
|
297 |
st.header("AI-Powered Tools")
|
298 |
|
|
|
299 |
st.subheader("Chat with CodeCraft")
|
300 |
chat_input = st.text_area("Enter your message:")
|
301 |
if st.button("Send"):
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
303 |
st.session_state.chat_history.append((chat_input, chat_response))
|
304 |
st.write(f"CodeCraft: {chat_response}")
|
305 |
|
|
|
306 |
st.subheader("Terminal")
|
307 |
terminal_input = st.text_input("Enter a command:")
|
308 |
if st.button("Run"):
|
309 |
terminal_output = terminal_interface(terminal_input)
|
310 |
-
st.session_state.terminal_history.append(
|
311 |
-
(terminal_input, terminal_output))
|
312 |
st.code(terminal_output, language="bash")
|
313 |
|
|
|
314 |
st.subheader("Code Editor")
|
315 |
code_editor = st.text_area("Write your code:", height=300)
|
316 |
if st.button("Format & Lint"):
|
@@ -318,42 +289,121 @@ elif app_mode == "Tool Box":
|
|
318 |
st.code(formatted_code, language="python")
|
319 |
st.info(lint_message)
|
320 |
|
|
|
321 |
st.subheader("Summarize Text")
|
322 |
text_to_summarize = st.text_area("Enter text to summarize:")
|
323 |
if st.button("Summarize"):
|
324 |
summary = summarize_text(text_to_summarize)
|
325 |
st.write(f"Summary: {summary}")
|
326 |
|
|
|
327 |
st.subheader("Sentiment Analysis")
|
328 |
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
329 |
if st.button("Analyze Sentiment"):
|
330 |
sentiment = sentiment_analysis(sentiment_text)
|
331 |
st.write(f"Sentiment: {sentiment}")
|
332 |
|
|
|
333 |
st.subheader("Translate Code")
|
334 |
code_to_translate = st.text_area("Enter code to translate:")
|
335 |
-
source_language = st.text_input("Enter source language (e.g
|
336 |
-
target_language = st.text_input(
|
337 |
-
"Enter target language (e.g., 'JavaScript'):")
|
338 |
if st.button("Translate Code"):
|
339 |
-
translated_code = translate_code(
|
340 |
-
code_to_translate, source_language, target_language)
|
341 |
st.code(translated_code, language=target_language.lower())
|
342 |
|
|
|
343 |
st.subheader("Code Generation")
|
344 |
code_idea = st.text_input("Enter your code idea:")
|
345 |
if st.button("Generate Code"):
|
346 |
-
generated_code = generate_code(code_idea
|
347 |
st.code(generated_code, language="python")
|
348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
elif app_mode == "Workspace Chat App":
|
|
|
350 |
st.header("Workspace Chat App")
|
351 |
|
|
|
352 |
st.subheader("Create a New Project")
|
353 |
project_name = st.text_input("Enter project name:")
|
354 |
if st.button("Create Project"):
|
355 |
workspace_status = workspace_interface(project_name)
|
356 |
st.success(workspace_status)
|
357 |
|
|
|
358 |
st.subheader("Add Code to Workspace")
|
359 |
-
code_to_add = st.text_area("Enter code to add to workspace:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
3 |
import streamlit as st
|
4 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
5 |
import black
|
6 |
+
from pylint import lint
|
7 |
+
from io import StringIO
|
8 |
|
9 |
+
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
10 |
+
PROJECT_ROOT = "projects"
|
11 |
+
AGENT_DIRECTORY = "agents"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Global state to manage communication between Tool Box and Workspace Chat App
|
14 |
+
if 'chat_history' not in st.session_state:
|
15 |
st.session_state.chat_history = []
|
16 |
+
if 'terminal_history' not in st.session_state:
|
17 |
st.session_state.terminal_history = []
|
18 |
+
if 'workspace_projects' not in st.session_state:
|
19 |
st.session_state.workspace_projects = {}
|
20 |
+
if 'available_agents' not in st.session_state:
|
21 |
st.session_state.available_agents = []
|
22 |
+
if 'current_state' not in st.session_state:
|
23 |
+
st.session_state.current_state = {
|
24 |
+
'toolbox': {},
|
25 |
+
'workspace_chat': {}
|
26 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
class AIAgent:
|
29 |
+
def __init__(self, name, description, skills):
|
30 |
self.name = name
|
31 |
self.description = description
|
32 |
self.skills = skills
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def create_agent_prompt(self):
|
35 |
+
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
36 |
+
agent_prompt = f"""
|
37 |
+
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
38 |
+
{skills_str}
|
39 |
+
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
40 |
+
"""
|
41 |
+
return agent_prompt
|
42 |
|
43 |
+
def autonomous_build(self, chat_history, workspace_projects):
|
44 |
+
"""
|
45 |
+
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
46 |
+
"""
|
47 |
+
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
48 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
49 |
|
50 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
return summary, next_step
|
53 |
|
54 |
+
def save_agent_to_file(agent):
|
55 |
+
"""Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
if not os.path.exists(AGENT_DIRECTORY):
|
57 |
os.makedirs(AGENT_DIRECTORY)
|
58 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
59 |
+
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
|
60 |
with open(file_path, "w") as file:
|
61 |
file.write(agent.create_agent_prompt())
|
62 |
+
with open(config_path, "w") as file:
|
63 |
+
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
|
64 |
st.session_state.available_agents.append(agent.name)
|
65 |
|
66 |
+
commit_and_push_changes(f"Add agent {agent.name}")
|
67 |
+
|
68 |
+
def load_agent_prompt(agent_name):
|
69 |
+
"""Loads an agent prompt from a file."""
|
70 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
71 |
if os.path.exists(file_path):
|
72 |
with open(file_path, "r") as file:
|
|
|
75 |
else:
|
76 |
return None
|
77 |
|
78 |
+
def create_agent_from_text(name, text):
|
79 |
+
skills = text.split('\n')
|
80 |
agent = AIAgent(name, "AI agent created from text input.", skills)
|
81 |
save_agent_to_file(agent)
|
82 |
return agent.create_agent_prompt()
|
83 |
|
84 |
+
# Chat interface using a selected agent
|
85 |
+
def chat_interface_with_agent(input_text, agent_name):
|
86 |
agent_prompt = load_agent_prompt(agent_name)
|
87 |
if agent_prompt is None:
|
88 |
return f"Agent {agent_name} not found."
|
89 |
|
90 |
+
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
91 |
+
model_name = "gpt2"
|
92 |
try:
|
93 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
95 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
96 |
+
except EnvironmentError as e:
|
|
|
97 |
return f"Error loading model: {e}"
|
98 |
|
99 |
+
# Combine the agent prompt with user input
|
100 |
+
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
101 |
+
|
102 |
+
# Truncate input text to avoid exceeding the model's maximum length
|
103 |
+
max_input_length = 900
|
104 |
+
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
105 |
+
if input_ids.shape[1] > max_input_length:
|
106 |
+
input_ids = input_ids[:, :max_input_length]
|
107 |
+
|
108 |
+
# Generate chatbot response
|
109 |
+
outputs = model.generate(
|
110 |
+
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
111 |
+
)
|
112 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
113 |
+
return response
|
114 |
+
|
115 |
+
def workspace_interface(project_name):
|
116 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
117 |
+
if not os.path.exists(PROJECT_ROOT):
|
118 |
+
os.makedirs(PROJECT_ROOT)
|
119 |
+
if not os.path.exists(project_path):
|
120 |
+
os.makedirs(project_path)
|
121 |
+
st.session_state.workspace_projects[project_name] = {"files": []}
|
122 |
+
st.session_state.current_state['workspace_chat']['project_name'] = project_name
|
123 |
+
commit_and_push_changes(f"Create project {project_name}")
|
124 |
+
return f"Project {project_name} created successfully."
|
125 |
+
else:
|
126 |
+
return f"Project {project_name} already exists."
|
127 |
+
|
128 |
+
def add_code_to_workspace(project_name, code, file_name):
|
129 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
130 |
+
if os.path.exists(project_path):
|
131 |
+
file_path = os.path.join(project_path, file_name)
|
132 |
+
with open(file_path, "w") as file:
|
133 |
+
file.write(code)
|
134 |
+
st.session_state.workspace_projects[project_name]["files"].append(file_name)
|
135 |
+
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
|
136 |
+
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
|
137 |
+
return f"Code added to {file_name} in project {project_name} successfully."
|
138 |
+
else:
|
139 |
+
return f"Project {project_name} does not exist."
|
140 |
+
|
141 |
+
def terminal_interface(command, project_name=None):
|
142 |
if project_name:
|
143 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
144 |
if not os.path.exists(project_path):
|
145 |
return f"Project {project_name} does not exist."
|
146 |
+
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
|
|
|
147 |
else:
|
148 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
149 |
+
if result.returncode == 0:
|
150 |
+
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
|
151 |
+
return result.stdout
|
152 |
+
else:
|
153 |
+
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
|
154 |
+
return result.stderr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
def summarize_text(text):
|
157 |
summarizer = pipeline("summarization")
|
158 |
+
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
159 |
+
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
|
160 |
return summary[0]['summary_text']
|
161 |
|
162 |
+
def sentiment_analysis(text):
|
163 |
analyzer = pipeline("sentiment-analysis")
|
164 |
+
sentiment = analyzer(text)
|
165 |
+
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
|
166 |
+
return sentiment[0]
|
167 |
+
|
168 |
+
# ... [rest of the translate_code function, but remove the OpenAI API call and replace it with your own logic] ...
|
169 |
+
|
170 |
+
def generate_code(code_idea):
|
171 |
+
# Replace this with a call to a Hugging Face model or your own logic
|
172 |
+
# For example, using a text-generation pipeline:
|
173 |
+
generator = pipeline('text-generation', model='gpt4o')
|
174 |
+
generated_code = generator(code_idea, max_length=10000, num_return_sequences=1)[0]['generated_text']
|
175 |
+
messages=[
|
176 |
+
{"role": "system", "content": "You are an expert software developer."},
|
177 |
+
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
178 |
+
]
|
179 |
+
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
180 |
+
|
181 |
+
return generated_code
|
182 |
+
|
183 |
+
def translate_code(code, input_language, output_language):
|
184 |
+
# Define a dictionary to map programming languages to their corresponding file extensions
|
185 |
+
language_extensions = {
|
186 |
+
|
187 |
+
}
|
188 |
|
189 |
+
# Add code to handle edge cases such as invalid input and unsupported programming languages
|
190 |
+
if input_language not in language_extensions:
|
191 |
+
raise ValueError(f"Invalid input language: {input_language}")
|
192 |
+
if output_language not in language_extensions:
|
193 |
+
raise ValueError(f"Invalid output language: {output_language}")
|
194 |
+
|
195 |
+
# Use the dictionary to map the input and output languages to their corresponding file extensions
|
196 |
+
input_extension = language_extensions[input_language]
|
197 |
+
output_extension = language_extensions[output_language]
|
198 |
+
|
199 |
+
# Translate the code using the OpenAI API
|
200 |
+
prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
|
201 |
+
response = openai.ChatCompletion.create(
|
202 |
+
model="gpt-4",
|
203 |
+
messages=[
|
204 |
+
{"role": "system", "content": "You are an expert software developer."},
|
205 |
+
{"role": "user", "content": prompt}
|
206 |
+
]
|
207 |
+
)
|
208 |
+
translated_code = response.choices[0].message['content'].strip()
|
209 |
+
|
210 |
+
# Return the translated code
|
211 |
+
translated_code = response.choices[0].message['content'].strip()
|
212 |
+
st.session_state.current_state['toolbox']['translated_code'] = translated_code
|
213 |
return translated_code
|
214 |
|
215 |
+
def generate_code(code_idea):
|
216 |
+
response = openai.ChatCompletion.create(
|
217 |
+
model="gpt-4",
|
218 |
+
messages=[
|
219 |
+
{"role": "system", "content": "You are an expert software developer."},
|
220 |
+
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
221 |
+
]
|
222 |
+
)
|
223 |
+
generated_code = response.choices[0].message['content'].strip()
|
224 |
+
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
225 |
+
return generated_code
|
226 |
+
|
227 |
+
def commit_and_push_changes(commit_message):
|
228 |
+
"""Commits and pushes changes to the Hugging Face repository."""
|
229 |
+
commands = [
|
230 |
+
"git add .",
|
231 |
+
f"git commit -m '{commit_message}'",
|
232 |
+
"git push"
|
233 |
+
]
|
234 |
+
for command in commands:
|
235 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
236 |
+
if result.returncode != 0:
|
237 |
+
st.error(f"Error executing command '{command}': {result.stderr}")
|
238 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
# Streamlit App
|
241 |
st.title("AI Agent Creator")
|
242 |
|
243 |
# Sidebar navigation
|
244 |
st.sidebar.title("Navigation")
|
245 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
|
|
246 |
|
247 |
if app_mode == "AI Agent Creator":
|
248 |
+
# AI Agent Creator
|
249 |
st.header("Create an AI Agent from Text")
|
250 |
|
251 |
st.subheader("From Text")
|
|
|
257 |
st.session_state.available_agents.append(agent_name)
|
258 |
|
259 |
elif app_mode == "Tool Box":
|
260 |
+
# Tool Box
|
261 |
st.header("AI-Powered Tools")
|
262 |
|
263 |
+
# Chat Interface
|
264 |
st.subheader("Chat with CodeCraft")
|
265 |
chat_input = st.text_area("Enter your message:")
|
266 |
if st.button("Send"):
|
267 |
+
if chat_input.startswith("@"):
|
268 |
+
agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
|
269 |
+
chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
|
270 |
+
chat_response = chat_interface_with_agent(chat_input, agent_name)
|
271 |
+
else:
|
272 |
+
chat_response = chat_interface(chat_input)
|
273 |
st.session_state.chat_history.append((chat_input, chat_response))
|
274 |
st.write(f"CodeCraft: {chat_response}")
|
275 |
|
276 |
+
# Terminal Interface
|
277 |
st.subheader("Terminal")
|
278 |
terminal_input = st.text_input("Enter a command:")
|
279 |
if st.button("Run"):
|
280 |
terminal_output = terminal_interface(terminal_input)
|
281 |
+
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
|
|
282 |
st.code(terminal_output, language="bash")
|
283 |
|
284 |
+
# Code Editor Interface
|
285 |
st.subheader("Code Editor")
|
286 |
code_editor = st.text_area("Write your code:", height=300)
|
287 |
if st.button("Format & Lint"):
|
|
|
289 |
st.code(formatted_code, language="python")
|
290 |
st.info(lint_message)
|
291 |
|
292 |
+
# Text Summarization Tool
|
293 |
st.subheader("Summarize Text")
|
294 |
text_to_summarize = st.text_area("Enter text to summarize:")
|
295 |
if st.button("Summarize"):
|
296 |
summary = summarize_text(text_to_summarize)
|
297 |
st.write(f"Summary: {summary}")
|
298 |
|
299 |
+
# Sentiment Analysis Tool
|
300 |
st.subheader("Sentiment Analysis")
|
301 |
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
302 |
if st.button("Analyze Sentiment"):
|
303 |
sentiment = sentiment_analysis(sentiment_text)
|
304 |
st.write(f"Sentiment: {sentiment}")
|
305 |
|
306 |
+
# Text Translation Tool (Code Translation)
|
307 |
st.subheader("Translate Code")
|
308 |
code_to_translate = st.text_area("Enter code to translate:")
|
309 |
+
source_language = st.text_input("Enter source language (e.g. 'Python'):")
|
310 |
+
target_language = st.text_input("Enter target language (e.g. 'JavaScript'):")
|
|
|
311 |
if st.button("Translate Code"):
|
312 |
+
translated_code = translate_code(code_to_translate, source_language, target_language)
|
|
|
313 |
st.code(translated_code, language=target_language.lower())
|
314 |
|
315 |
+
# Code Generation
|
316 |
st.subheader("Code Generation")
|
317 |
code_idea = st.text_input("Enter your code idea:")
|
318 |
if st.button("Generate Code"):
|
319 |
+
generated_code = generate_code(code_idea)
|
320 |
st.code(generated_code, language="python")
|
321 |
|
322 |
+
# Display Preset Commands
|
323 |
+
st.subheader("Preset Commands")
|
324 |
+
preset_commands = {
|
325 |
+
"Create a new project": "create_project('project_name')",
|
326 |
+
"Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
|
327 |
+
"Run terminal command": "terminal_interface('command', 'project_name')",
|
328 |
+
"Generate code": "generate_code('code_idea')",
|
329 |
+
"Summarize text": "summarize_text('text')",
|
330 |
+
"Analyze sentiment": "sentiment_analysis('text')",
|
331 |
+
"Translate code": "translate_code('code', 'source_language', 'target_language')",
|
332 |
+
}
|
333 |
+
for command_name, command in preset_commands.items():
|
334 |
+
st.write(f"{command_name}: `{command}`")
|
335 |
+
|
336 |
elif app_mode == "Workspace Chat App":
|
337 |
+
# Workspace Chat App
|
338 |
st.header("Workspace Chat App")
|
339 |
|
340 |
+
# Project Workspace Creation
|
341 |
st.subheader("Create a New Project")
|
342 |
project_name = st.text_input("Enter project name:")
|
343 |
if st.button("Create Project"):
|
344 |
workspace_status = workspace_interface(project_name)
|
345 |
st.success(workspace_status)
|
346 |
|
347 |
+
# Add Code to Workspace
|
348 |
st.subheader("Add Code to Workspace")
|
349 |
+
code_to_add = st.text_area("Enter code to add to workspace:")
|
350 |
+
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
|
351 |
+
if st.button("Add Code"):
|
352 |
+
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
353 |
+
st.success(add_code_status)
|
354 |
+
|
355 |
+
# Terminal Interface with Project Context
|
356 |
+
st.subheader("Terminal (Workspace Context)")
|
357 |
+
terminal_input = st.text_input("Enter a command within the workspace:")
|
358 |
+
if st.button("Run Command"):
|
359 |
+
terminal_output = terminal_interface(terminal_input, project_name)
|
360 |
+
st.code(terminal_output, language="bash")
|
361 |
+
|
362 |
+
# Chat Interface for Guidance
|
363 |
+
st.subheader("Chat with CodeCraft for Guidance")
|
364 |
+
chat_input = st.text_area("Enter your message for guidance:")
|
365 |
+
if st.button("Get Guidance"):
|
366 |
+
chat_response = chat_interface(chat_input)
|
367 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
368 |
+
st.write(f"CodeCraft: {chat_response}")
|
369 |
+
|
370 |
+
# Display Chat History
|
371 |
+
st.subheader("Chat History")
|
372 |
+
for user_input, response in st.session_state.chat_history:
|
373 |
+
st.write(f"User: {user_input}")
|
374 |
+
st.write(f"CodeCraft: {response}")
|
375 |
+
|
376 |
+
# Display Terminal History
|
377 |
+
st.subheader("Terminal History")
|
378 |
+
for command, output in st.session_state.terminal_history:
|
379 |
+
st.write(f"Command: {command}")
|
380 |
+
st.code(output, language="bash")
|
381 |
+
|
382 |
+
# Display Projects and Files
|
383 |
+
st.subheader("Workspace Projects")
|
384 |
+
for project, details in st.session_state.workspace_projects.items():
|
385 |
+
st.write(f"Project: {project}")
|
386 |
+
for file in details['files']:
|
387 |
+
st.write(f" - {file}")
|
388 |
+
|
389 |
+
# Chat with AI Agents
|
390 |
+
st.subheader("Chat with AI Agents")
|
391 |
+
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
392 |
+
agent_chat_input = st.text_area("Enter your message for the agent:")
|
393 |
+
if st.button("Send to Agent"):
|
394 |
+
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
|
395 |
+
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
|
396 |
+
st.write(f"{selected_agent}: {agent_chat_response}")
|
397 |
+
|
398 |
+
# Automate Build Process
|
399 |
+
st.subheader("Automate Build Process")
|
400 |
+
if st.button("Automate"):
|
401 |
+
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
402 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
|
403 |
+
st.write("Autonomous Build Summary:")
|
404 |
+
st.write(summary)
|
405 |
+
st.write("Next Step:")
|
406 |
+
st.write(next_step)
|
407 |
+
|
408 |
+
# Display current state for debugging
|
409 |
+
st.sidebar.subheader("Current State")
|