Spaces:
Sleeping
Sleeping
acecalisto3
commited on
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,207 +1,284 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
createLlamaPrompt,
|
18 |
-
createSpace,
|
19 |
-
isPythonOrGradioAppPrompt,
|
20 |
-
isReactAppPrompt,
|
21 |
-
isStreamlitAppPrompt,
|
22 |
-
getWebApp,
|
23 |
-
getGradioApp,
|
24 |
-
getReactApp,
|
25 |
-
getStreamlitApp,
|
26 |
-
parseTutorial,
|
27 |
-
generateFiles,
|
28 |
)
|
29 |
-
from
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
self.client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
35 |
|
36 |
-
def process(self, user_input: str) -> str:
|
37 |
-
""" Processes the user's input and generates code. """
|
38 |
-
# Parse the user's input
|
39 |
-
app_type, app_name, app_description, app_features, app_dependencies, app_space, app_tutorial = self.parse_input(user_input)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
# Generate code using the Llama model
|
47 |
-
code = self.generate_code(prompt)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
app_description = self.extract_app_description(user_input)
|
65 |
-
# Extract the app features
|
66 |
-
app_features = self.extract_app_features(user_input)
|
67 |
-
# Extract the app dependencies
|
68 |
-
app_dependencies = self.extract_app_dependencies(user_input)
|
69 |
-
# Extract the app space
|
70 |
-
app_space = self.extract_app_space(user_input)
|
71 |
-
# Extract the app tutorial
|
72 |
-
app_tutorial = self.extract_app_tutorial(user_input)
|
73 |
-
|
74 |
-
return app_type, app_name, app_description, app_features, app_dependencies, app_space, app_tutorial
|
75 |
-
|
76 |
-
def extract_app_type(self, user_input: str) -> AppType:
|
77 |
-
""" Extracts the app type from the user's input. """
|
78 |
-
# Check if the user specified a specific app type
|
79 |
-
if "web app" in user_input:
|
80 |
-
return AppType.WEB_APP
|
81 |
-
elif "gradio app" in user_input:
|
82 |
-
return AppType.GRADIO_APP
|
83 |
-
elif "streamlit app" in user_input:
|
84 |
-
return AppType.STREAMLIT_APP
|
85 |
-
elif "react app" in user_input:
|
86 |
-
return AppType.REACT_APP
|
87 |
-
# Otherwise, assume the user wants a web app
|
88 |
-
return AppType.WEB_APP
|
89 |
-
|
90 |
-
def extract_app_name(self, user_input: str) -> str:
|
91 |
-
""" Extracts the app name from the user's input. """
|
92 |
-
# Find the substring "app name is:"
|
93 |
-
start_index = user_input.find("app name is:") + len("app name is:")
|
94 |
-
# Find the end of the app name
|
95 |
-
end_index = user_input.find(".", start_index)
|
96 |
-
# Extract the app name
|
97 |
-
app_name = user_input[start_index:end_index].strip()
|
98 |
-
return app_name
|
99 |
-
|
100 |
-
def extract_app_description(self, user_input: str) -> str:
|
101 |
-
""" Extracts the app description from the user's input. """
|
102 |
-
# Find the substring "app description is:"
|
103 |
-
start_index = user_input.find("app description is:") + len("app description is:")
|
104 |
-
# Find the end of the app description
|
105 |
-
end_index = user_input.find(".", start_index)
|
106 |
-
# Extract the app description
|
107 |
-
app_description = user_input[start_index:end_index].strip()
|
108 |
-
return app_description
|
109 |
-
|
110 |
-
def extract_app_features(self, user_input: str) -> List[str]:
|
111 |
-
""" Extracts the app features from the user's input. """
|
112 |
-
# Find the substring "app features are:"
|
113 |
-
start_index = user_input.find("app features are:") + len("app features are:")
|
114 |
-
# Find the end of the app features
|
115 |
-
end_index = user_input.find(".", start_index)
|
116 |
-
# Extract the app features
|
117 |
-
app_features_str = user_input[start_index:end_index].strip()
|
118 |
-
# Split the app features string into a list
|
119 |
-
app_features = app_features_str.split(", ")
|
120 |
-
return app_features
|
121 |
-
|
122 |
-
def extract_app_dependencies(self, user_input: str) -> List[str]:
|
123 |
-
""" Extracts the app dependencies from the user's input. """
|
124 |
-
# Find the substring "app dependencies are:"
|
125 |
-
start_index = user_input.find("app dependencies are:") + len("app dependencies are:")
|
126 |
-
# Find the end of the app dependencies
|
127 |
-
end_index = user_input.find(".", start_index)
|
128 |
-
# Extract the app dependencies
|
129 |
-
app_dependencies_str = user_input[start_index:end_index].strip()
|
130 |
-
# Split the app dependencies string into a list
|
131 |
-
app_dependencies = app_dependencies_str.split(", ")
|
132 |
-
return app_dependencies
|
133 |
-
|
134 |
-
def extract_app_space(self, user_input: str) -> Optional[Space]:
|
135 |
-
""" Extracts the app space from the user's input. """
|
136 |
-
# Find the substring "app space is:"
|
137 |
-
start_index = user_input.find("app space is:") + len("app space is:")
|
138 |
-
# Find the end of the app space
|
139 |
-
end_index = user_input.find(".", start_index)
|
140 |
-
# Extract the app space
|
141 |
-
app_space_str = user_input[start_index:end_index].strip()
|
142 |
-
# Create a Space object
|
143 |
-
app_space = Space(space=app_space_str)
|
144 |
-
return app_space
|
145 |
-
|
146 |
-
def extract_app_tutorial(self, user_input: str) -> Optional[Tutorial]:
|
147 |
-
""" Extracts the app tutorial from the user's input. """
|
148 |
-
# Find the substring "app tutorial is:"
|
149 |
-
start_index = user_input.find("app tutorial is:") + len("app tutorial is:")
|
150 |
-
# Find the end of the app tutorial
|
151 |
-
end_index = user_input.find(".", start_index)
|
152 |
-
# Extract the app tutorial
|
153 |
-
app_tutorial_str = user_input[start_index:end_index].strip()
|
154 |
-
# Create a Tutorial object
|
155 |
-
app_tutorial = Tutorial(tutorial=app_tutorial_str)
|
156 |
-
return app_tutorial
|
157 |
-
|
158 |
-
def generate_code(self, prompt: Prompt) -> Code:
|
159 |
-
""" Generates code using the Llama model. """
|
160 |
-
# Send the prompt to the Llama model
|
161 |
-
response = self.client(prompt.prompt)
|
162 |
-
# Extract the generated code
|
163 |
-
code = response["generated_text"]
|
164 |
-
code = code.replace("```", "")
|
165 |
-
code = code.replace("```", "")
|
166 |
-
# Create a Code object
|
167 |
-
code = Code(code=code, language="python")
|
168 |
-
return code
|
169 |
-
|
170 |
-
def generate_files(self, app_type: AppType, app_name: str, app_description: str, app_features: List[str], app_dependencies: List[str], app_space: Optional[Space] = None, app_tutorial: Optional[Tutorial] = None) -> List[File]:
|
171 |
-
""" Generates files for the application. """
|
172 |
-
# Generate files based on the app type
|
173 |
-
files = self.prompts["generateFiles"](
|
174 |
-
app_type, app_name, app_description, app_features, app_dependencies, app_space, app_tutorial
|
175 |
)
|
176 |
-
return
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
# Get user input
|
198 |
-
user_input = input("Enter your request: ")
|
199 |
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
import openai
|
5 |
+
|
6 |
+
from agent.prompts import (
|
7 |
+
ACTION_PROMPT,
|
8 |
+
ADD_PROMPT,
|
9 |
+
COMPRESS_HISTORY_PROMPT,
|
10 |
+
LOG_PROMPT,
|
11 |
+
LOG_RESPONSE,
|
12 |
+
MODIFY_PROMPT,
|
13 |
+
PREFIX,
|
14 |
+
READ_PROMPT,
|
15 |
+
TASK_PROMPT,
|
16 |
+
UNDERSTAND_TEST_RESULTS_PROMPT,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
+
from agent.utils import parse_action, parse_file_content, read_python_module_structure
|
19 |
|
20 |
+
VERBOSE = False
|
21 |
+
MAX_HISTORY = 100
|
22 |
+
MODEL = "gpt-3.5-turbo" # "gpt-4"
|
|
|
23 |
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def run_gpt(
|
26 |
+
prompt_template,
|
27 |
+
stop_tokens,
|
28 |
+
max_tokens,
|
29 |
+
module_summary,
|
30 |
+
purpose,
|
31 |
+
**prompt_kwargs,
|
32 |
+
):
|
33 |
+
content = PREFIX.format(
|
34 |
+
module_summary=module_summary,
|
35 |
+
purpose=purpose,
|
36 |
+
) + prompt_template.format(**prompt_kwargs)
|
37 |
+
if VERBOSE:
|
38 |
+
print(LOG_PROMPT.format(content))
|
39 |
+
resp = openai.ChatCompletion.create(
|
40 |
+
model=MODEL,
|
41 |
+
messages=[
|
42 |
+
{"role": "system", "content": content},
|
43 |
+
],
|
44 |
+
temperature=0.0,
|
45 |
+
max_tokens=max_tokens,
|
46 |
+
stop=stop_tokens if stop_tokens else None,
|
47 |
+
)["choices"][0]["message"]["content"]
|
48 |
+
if VERBOSE:
|
49 |
+
print(LOG_RESPONSE.format(resp))
|
50 |
+
return resp
|
51 |
|
|
|
|
|
52 |
|
53 |
+
def compress_history(purpose, task, history, directory):
|
54 |
+
module_summary, _, _ = read_python_module_structure(directory)
|
55 |
+
resp = run_gpt(
|
56 |
+
COMPRESS_HISTORY_PROMPT,
|
57 |
+
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
58 |
+
max_tokens=512,
|
59 |
+
module_summary=module_summary,
|
60 |
+
purpose=purpose,
|
61 |
+
task=task,
|
62 |
+
history=history,
|
63 |
+
)
|
64 |
+
history = "observation: {}\n".format(resp)
|
65 |
+
return history
|
66 |
+
|
67 |
+
|
68 |
+
def call_main(purpose, task, history, directory, action_input):
|
69 |
+
module_summary, _, _ = read_python_module_structure(directory)
|
70 |
+
resp = run_gpt(
|
71 |
+
ACTION_PROMPT,
|
72 |
+
stop_tokens=["observation:", "task:"],
|
73 |
+
max_tokens=256,
|
74 |
+
module_summary=module_summary,
|
75 |
+
purpose=purpose,
|
76 |
+
task=task,
|
77 |
+
history=history,
|
78 |
+
)
|
79 |
+
lines = resp.strip().strip("\n").split("\n")
|
80 |
+
for line in lines:
|
81 |
+
if line == "":
|
82 |
+
continue
|
83 |
+
if line.startswith("thought: "):
|
84 |
+
history += "{}\n".format(line)
|
85 |
+
elif line.startswith("action: "):
|
86 |
+
action_name, action_input = parse_action(line)
|
87 |
+
history += "{}\n".format(line)
|
88 |
+
return action_name, action_input, history, task
|
89 |
+
else:
|
90 |
+
assert False, "unknown action: {}".format(line)
|
91 |
+
return "MAIN", None, history, task
|
92 |
|
93 |
+
|
94 |
+
def call_test(purpose, task, history, directory, action_input):
|
95 |
+
result = subprocess.run(
|
96 |
+
["python", "-m", "pytest", "--collect-only", directory],
|
97 |
+
capture_output=True,
|
98 |
+
text=True,
|
99 |
+
)
|
100 |
+
if result.returncode != 0:
|
101 |
+
history += "observation: there are no tests! Test should be written in a test folder under {}\n".format(
|
102 |
+
directory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
+
return "MAIN", None, history, task
|
105 |
+
result = subprocess.run(
|
106 |
+
["python", "-m", "pytest", directory], capture_output=True, text=True
|
107 |
+
)
|
108 |
+
if result.returncode == 0:
|
109 |
+
history += "observation: tests pass\n"
|
110 |
+
return "MAIN", None, history, task
|
111 |
+
module_summary, content, _ = read_python_module_structure(directory)
|
112 |
+
resp = run_gpt(
|
113 |
+
UNDERSTAND_TEST_RESULTS_PROMPT,
|
114 |
+
stop_tokens=[],
|
115 |
+
max_tokens=256,
|
116 |
+
module_summary=module_summary,
|
117 |
+
purpose=purpose,
|
118 |
+
task=task,
|
119 |
+
history=history,
|
120 |
+
stdout=result.stdout[:5000], # limit amount of text
|
121 |
+
stderr=result.stderr[:5000], # limit amount of text
|
122 |
+
)
|
123 |
+
history += "observation: tests failed: {}\n".format(resp)
|
124 |
+
return "MAIN", None, history, task
|
125 |
+
|
126 |
+
|
127 |
+
def call_set_task(purpose, task, history, directory, action_input):
|
128 |
+
module_summary, content, _ = read_python_module_structure(directory)
|
129 |
+
task = run_gpt(
|
130 |
+
TASK_PROMPT,
|
131 |
+
stop_tokens=[],
|
132 |
+
max_tokens=64,
|
133 |
+
module_summary=module_summary,
|
134 |
+
purpose=purpose,
|
135 |
+
task=task,
|
136 |
+
history=history,
|
137 |
+
).strip("\n")
|
138 |
+
history += "observation: task has been updated to: {}\n".format(task)
|
139 |
+
return "MAIN", None, history, task
|
140 |
+
|
141 |
+
|
142 |
+
def call_read(purpose, task, history, directory, action_input):
|
143 |
+
if not os.path.exists(action_input):
|
144 |
+
history += "observation: file does not exist\n"
|
145 |
+
return "MAIN", None, history, task
|
146 |
+
module_summary, content, _ = read_python_module_structure(directory)
|
147 |
+
f_content = (
|
148 |
+
content[action_input] if content[action_input] else "< document is empty >"
|
149 |
)
|
150 |
+
resp = run_gpt(
|
151 |
+
READ_PROMPT,
|
152 |
+
stop_tokens=[],
|
153 |
+
max_tokens=256,
|
154 |
+
module_summary=module_summary,
|
155 |
+
purpose=purpose,
|
156 |
+
task=task,
|
157 |
+
history=history,
|
158 |
+
file_path=action_input,
|
159 |
+
file_contents=f_content,
|
160 |
+
).strip("\n")
|
161 |
+
history += "observation: {}\n".format(resp)
|
162 |
+
return "MAIN", None, history, task
|
163 |
|
|
|
|
|
164 |
|
165 |
+
def call_modify(purpose, task, history, directory, action_input):
|
166 |
+
if not os.path.exists(action_input):
|
167 |
+
history += "observation: file does not exist\n"
|
168 |
+
return "MAIN", None, history, task
|
169 |
+
(
|
170 |
+
module_summary,
|
171 |
+
content,
|
172 |
+
_,
|
173 |
+
) = read_python_module_structure(directory)
|
174 |
+
f_content = (
|
175 |
+
content[action_input] if content[action_input] else "< document is empty >"
|
176 |
+
)
|
177 |
+
resp = run_gpt(
|
178 |
+
MODIFY_PROMPT,
|
179 |
+
stop_tokens=["action:", "thought:", "observation:"],
|
180 |
+
max_tokens=2048,
|
181 |
+
module_summary=module_summary,
|
182 |
+
purpose=purpose,
|
183 |
+
task=task,
|
184 |
+
history=history,
|
185 |
+
file_path=action_input,
|
186 |
+
file_contents=f_content,
|
187 |
+
)
|
188 |
+
new_contents, description = parse_file_content(resp)
|
189 |
+
if new_contents is None:
|
190 |
+
history += "observation: failed to modify file\n"
|
191 |
+
return "MAIN", None, history, task
|
192 |
+
|
193 |
+
with open(action_input, "w") as f:
|
194 |
+
f.write(new_contents)
|
195 |
+
|
196 |
+
history += "observation: file successfully modified\n"
|
197 |
+
history += "observation: {}\n".format(description)
|
198 |
+
return "MAIN", None, history, task
|
199 |
+
|
200 |
+
|
201 |
+
def call_add(purpose, task, history, directory, action_input):
|
202 |
+
d = os.path.dirname(action_input)
|
203 |
+
if not d.startswith(directory):
|
204 |
+
history += "observation: files must be under directory {}\n".format(directory)
|
205 |
+
elif not action_input.endswith(".py"):
|
206 |
+
history += "observation: can only write .py files\n"
|
207 |
+
else:
|
208 |
+
if d and not os.path.exists(d):
|
209 |
+
os.makedirs(d)
|
210 |
+
if not os.path.exists(action_input):
|
211 |
+
module_summary, _, _ = read_python_module_structure(directory)
|
212 |
+
resp = run_gpt(
|
213 |
+
ADD_PROMPT,
|
214 |
+
stop_tokens=["action:", "thought:", "observation:"],
|
215 |
+
max_tokens=2048,
|
216 |
+
module_summary=module_summary,
|
217 |
+
purpose=purpose,
|
218 |
+
task=task,
|
219 |
+
history=history,
|
220 |
+
file_path=action_input,
|
221 |
+
)
|
222 |
+
new_contents, description = parse_file_content(resp)
|
223 |
+
if new_contents is None:
|
224 |
+
history += "observation: failed to write file\n"
|
225 |
+
return "MAIN", None, history, task
|
226 |
+
|
227 |
+
with open(action_input, "w") as f:
|
228 |
+
f.write(new_contents)
|
229 |
+
|
230 |
+
history += "observation: file successfully written\n"
|
231 |
+
history += "obsertation: {}\n".format(description)
|
232 |
+
else:
|
233 |
+
history += "observation: file already exists\n"
|
234 |
+
return "MAIN", None, history, task
|
235 |
+
|
236 |
|
237 |
+
NAME_TO_FUNC = {
|
238 |
+
"MAIN": call_main,
|
239 |
+
"UPDATE-TASK": call_set_task,
|
240 |
+
"MODIFY-FILE": call_modify,
|
241 |
+
"READ-FILE": call_read,
|
242 |
+
"ADD-FILE": call_add,
|
243 |
+
"TEST": call_test,
|
244 |
+
}
|
245 |
|
246 |
+
|
247 |
+
def run_action(purpose, task, history, directory, action_name, action_input):
|
248 |
+
if action_name == "COMPLETE":
|
249 |
+
exit(0)
|
250 |
+
|
251 |
+
# compress the history when it is long
|
252 |
+
if len(history.split("\n")) > MAX_HISTORY:
|
253 |
+
if VERBOSE:
|
254 |
+
print("COMPRESSING HISTORY")
|
255 |
+
history = compress_history(purpose, task, history, directory)
|
256 |
+
|
257 |
+
assert action_name in NAME_TO_FUNC
|
258 |
+
|
259 |
+
print("RUN: ", action_name, action_input)
|
260 |
+
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
261 |
+
|
262 |
+
|
263 |
+
def run(purpose, directory, task=None):
|
264 |
+
history = ""
|
265 |
+
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
266 |
+
action_input = None
|
267 |
+
while True:
|
268 |
+
print("")
|
269 |
+
print("")
|
270 |
+
print("---")
|
271 |
+
print("purpose:", purpose)
|
272 |
+
print("task:", task)
|
273 |
+
print("---")
|
274 |
+
print(history)
|
275 |
+
print("---")
|
276 |
+
|
277 |
+
action_name, action_input, history, task = run_action(
|
278 |
+
purpose,
|
279 |
+
task,
|
280 |
+
history,
|
281 |
+
directory,
|
282 |
+
action_name,
|
283 |
+
action_input,
|
284 |
+
)
|