Spaces:
Runtime error
Runtime error
File size: 12,026 Bytes
1e83e3d cb93205 4db55cd 1e83e3d cb93205 8f86068 1e83e3d cb93205 1e83e3d cb93205 1e83e3d cb93205 8f86068 1e83e3d 4db55cd 4affe68 4db55cd 1e83e3d 4db55cd 1e83e3d 4affe68 1e83e3d 4db55cd 1e83e3d 8f86068 1e83e3d 4db55cd 1e83e3d 4db55cd 1e83e3d 8f86068 1e83e3d 8f86068 cb93205 4affe68 cb93205 4db55cd 8f86068 4affe68 8f86068 cb93205 8f86068 cb93205 8f86068 4affe68 cb93205 8f86068 cb93205 8f86068 4affe68 cb93205 4affe68 cb93205 1e83e3d 8f86068 4affe68 8f86068 cb93205 8f86068 4affe68 8f86068 cb93205 4affe68 a5ef230 4affe68 8f86068 a5ef230 cb93205 4affe68 a5ef230 cb93205 4db55cd 4affe68 4db55cd 4affe68 cb93205 a5ef230 4affe68 4db55cd a5ef230 8f86068 4affe68 1e83e3d 8f86068 4affe68 8f86068 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import json
import logging
import os
import random
from functools import partial
import gradio as gr
from datasets import Dataset, load_dataset
from dotenv import load_dotenv
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
load_dotenv()
# dataset = load_dataset("detection-datasets/coco")
it_dataset = (
load_dataset("imagenet-1k", split="train", streaming=True, trust_remote_code=True)
.shuffle(42)
.skip(0)
.take(1000)
)
def gen_from_iterable_dataset(iterable_ds):
"""
Convert an iterable dataset to a generator
"""
yield from iterable_ds
dataset = Dataset.from_generator(
partial(gen_from_iterable_dataset, it_dataset), features=it_dataset.features
)
# imagenet_categories_data.json is a JSON file containing a hierarchy of ImageNet categories.
# We want to take all categories under "artifact, artefact".
# Each node has this structure:
# {
# "id": 1,
# "name": "entity",
# "children": ...
# }
with open("imagenet_categories_data.json") as f:
data = json.load(f)
# Recursively find all categories under "artifact, artefact".
# We want to get all the "index" values of the leaf nodes. Nodes that are not leaf nodes have a "children" key.
def find_categories(node):
if "children" in node:
for child in node["children"]:
yield from find_categories(child)
elif "index" in node:
yield node["index"]
broad_categories = data["children"]
artifact_category = next(
filter(lambda x: x["name"] == "artifact, artefact", broad_categories)
)
artifact_categories = list(find_categories(artifact_category))
# logger.info(f"Artifact categories: {artifact_categories}")
def filter_imgs_by_label(x):
"""
Filter out the images that have label -1
"""
return x["label"] in artifact_categories
dataset = dataset.filter(filter_imgs_by_label)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
load_dotenv()
def get_user_prompt():
# Pick the first 3 images and labels
images = []
machine_labels = []
human_labels = []
for i in range(3):
data = dataset[random.randint(0, len(dataset) - 1)]
images.append(data["image"])
# Get the label as a human readable string
machine_labels.append(data["label"])
human_label = dataset.features["label"].int2str(data["label"])
human_labels.append(human_label)
return {
"images": images,
"machine_labels": machine_labels,
"human_labels": human_labels,
}
hf_writer = gr.HuggingFaceDatasetSaver(
hf_token=os.environ["HF_TOKEN"],
dataset_name="acmc/maker-faire-bot",
private=True,
)
csv_writer = gr.CSVLogger()
theme = gr.themes.Default(primary_hue="cyan", secondary_hue="fuchsia")
translation_table = {
"Maker Faire Bot": "Maker Faire Bot",
"**Think about these objects...**": "**Tænk på disse objekter...**",
"We want to build a Maker Faire Bot that can generate creative ideas. Help us by providing ideas on what you'd build with the following three objects!": "Vi vil bygge en Maker Faire Bot, der kan generere kreative ideer. Hjælp os ved at give ideer til, hvad du ville bygge med de følgende tre objekter!",
"Change": "Skift",
"What would you build with these 3 things?": "Hvad ville du bygge med disse 3 ting?",
"For example, if you have a roll of string, a camera, and a loudspeaker, you could build an electronic guitar. If you can write in Danish, that's great!": "For eksempel, hvis du har en rulle snor, et kamera og en højttaler, kunne du bygge en elektronisk guitar. Hvis du kan skrive på dansk, er det fantastisk!",
"It doesn't need to be a very long explanation, just a few sentences to help the bot understand your idea.": "Det behøver ikke være en meget lang forklaring, bare et par sætninger for at hjælpe robotten med at forstå din idé.",
"Submit": "Indsend",
"New Prompt": "Ny opgave",
"How would you build it?": "Hvordan ville du bygge det?",
"This is an experimental project. Your data is anonymous and will be used to train an AI model. By using this tool, you agree to our policy.": "Dette er et eksperimentelt projekt. Dine data er anonyme og vil blive brugt til at træne en AI-model. Ved at bruge dette værktøj accepterer du vores politik.",
"(example): An digital electronic guitar": "(eksempel): En digital elektronisk guitar",
"""I would use the roll of string to create the strings of the guitar, and the camera to analyze the hand movements. Then, I would use an AI model to predict the chords and play the sound through the loudspeaker.""": """Jeg ville bruge snoren til at skabe guitarens strenge, og kameraet til at analysere håndbevægelserne. Derefter ville jeg bruge en AI-model til at forudsige akkorderne og afspille lyden gennem højttaleren.""",
}
def get_bilingual_string(key):
return f"{translation_table[key]} // {key}"
with gr.Blocks(theme=theme) as demo:
with gr.Row() as header:
gr.Image(
"maker-faire-logo.webp",
show_download_button=False,
show_label=False,
show_share_button=False,
container=False,
# height=100,
scale=0.2,
)
gr.Markdown(
get_bilingual_string("Maker Faire Bot"),
visible=False,
)
user_prompt = gr.State(get_user_prompt())
gr.Markdown(get_bilingual_string("**Think about these objects...**"))
gr.Markdown(
get_bilingual_string(
"We want to build a Maker Faire Bot that can generate creative ideas. Help us by providing ideas on what you'd build with the following three objects!"
)
)
image_components = []
with gr.Row(variant="panel") as row:
def change_image(this_i, user_prompt):
logger.info(
f"Current user prompt: {user_prompt}, current image index: {this_i}"
)
data = dataset[random.randint(0, len(dataset) - 1)]
new_user_prompt = user_prompt.copy()
new_user_prompt["images"][this_i] = data["image"]
new_user_prompt["machine_labels"][this_i] = data["label"]
new_user_prompt["human_labels"][this_i] = dataset.features[
"label"
].int2str(data["label"])
logger.info(f"New user prompt: {new_user_prompt}")
return (
new_user_prompt,
new_user_prompt["images"][this_i],
gr.update(
label=new_user_prompt["human_labels"][this_i],
),
)
with gr.Column(variant="default") as col:
img = gr.Image(
user_prompt.value["images"][0],
label=user_prompt.value["human_labels"][0],
interactive=False,
show_download_button=False,
show_share_button=False,
)
image_components.append(img)
btn = gr.Button(get_bilingual_string("Change"), variant="secondary")
btn.click(
lambda *args: change_image(0, *args),
inputs=[user_prompt],
outputs=[user_prompt, img, img],
preprocess=True,
postprocess=True,
)
with gr.Column(variant="default") as col:
img = gr.Image(
user_prompt.value["images"][1],
label=user_prompt.value["human_labels"][1],
interactive=False,
show_download_button=False,
show_share_button=False,
)
image_components.append(img)
btn = gr.Button(get_bilingual_string("Change"), variant="secondary")
btn.click(
lambda *args: change_image(1, *args),
inputs=[user_prompt],
outputs=[user_prompt, img, img],
preprocess=True,
postprocess=True,
)
with gr.Column(variant="default") as col:
img = gr.Image(
user_prompt.value["images"][2],
label=user_prompt.value["human_labels"][2],
interactive=False,
show_download_button=False,
show_share_button=False,
)
image_components.append(img)
btn = gr.Button(get_bilingual_string("Change"), variant="secondary")
btn.click(
lambda *args: change_image(2, *args),
inputs=[user_prompt],
outputs=[user_prompt, img, img],
preprocess=True,
postprocess=True,
)
user_answer_object = gr.Textbox(
autofocus=True,
placeholder=get_bilingual_string("(example): An digital electronic guitar"),
label=get_bilingual_string("What would you build with these 3 things?"),
info=get_bilingual_string("For example, if you have a roll of string, a camera, and a loudspeaker, you could build an electronic guitar. If you can write in Danish, that's great!")
)
user_answer_explanation = gr.TextArea(
autofocus=True,
label=get_bilingual_string("How would you build it?"),
# The example uses a roll of string, a camera, and a loudspeaker to build an electronic guitar.
placeholder=get_bilingual_string(
"""I would use the roll of string to create the strings of the guitar, and the camera to analyze the hand movements. Then, I would use an AI model to predict the chords and play the sound through the loudspeaker."""
),
info=get_bilingual_string("It doesn't need to be a very long explanation, just a few sentences to help the bot understand your idea.")
)
csv_writer.setup(
components=[user_prompt, user_answer_object, user_answer_explanation],
flagging_dir="user_data_csv",
)
hf_writer.setup(
components=[user_prompt, user_answer_object, user_answer_explanation],
flagging_dir="user_data_hf",
)
submit_btn = gr.Button(get_bilingual_string("Submit"), variant="primary")
def log_results(prompt, object, explanation):
logger.info(f"logging - Prompt: {prompt}")
# csv_writer.flag(
# [
# {
# "machine_labels": prompt["machine_labels"],
# "human_labels": prompt["human_labels"],
# },
# object,
# explanation,
# ]
# )
hf_writer.flag(
[
{
"machine_labels": prompt["machine_labels"],
"human_labels": prompt["human_labels"],
},
object,
explanation,
]
)
return ["", ""] # Clear the textboxes
submit_btn.click(
log_results,
inputs=[user_prompt, user_answer_object, user_answer_explanation],
outputs=[user_answer_object, user_answer_explanation],
preprocess=True,
)
# def renew_prompt(image_components):
# new_prompt = get_user_prompt()
# for i in range(len(new_prompt["images"])):
# image_components[i].update(
# url=new_prompt["images"][i],
# label=new_prompt["human_labels"][i],
# )
# return new_prompt
# new_prompt_btn = gr.Button(get_bilingual_string("New Prompt"), variant="secondary")
# new_prompt_btn.click(
# renew_prompt,
# inputs=image_components,
# outputs=[user_prompt],
# # preprocess=True,
# )
gr.Markdown(
get_bilingual_string(
"This is an experimental project. Your data is anonymous and will be used to train an AI model. By using this tool, you agree to our policy."
)
)
if __name__ == "__main__":
demo.launch()
|