Spaces:
Runtime error
Runtime error
adalbertojunior
commited on
Commit
·
f8bd957
1
Parent(s):
587e50d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import VisionEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
CHECKPOINT = "adalbertojunior/image_captioning_portuguese"
|
9 |
+
|
10 |
+
@st.cache
|
11 |
+
def get_model():
|
12 |
+
model = VisionEncoderDecoderModel.from_pretrained(CHECKPOINT)
|
13 |
+
return model
|
14 |
+
|
15 |
+
|
16 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(CHECKPOINT)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
|
18 |
+
|
19 |
+
st.title("Image Captioning with ViT & GPT2 🇧🇷")
|
20 |
+
|
21 |
+
st.sidebar.markdown("## Generation parameters")
|
22 |
+
max_length = st.sidebar.number_input("Max length", value=20, min_value=1)
|
23 |
+
no_repeat_ngram_size = st.sidebar.number_input("no repeat ngrams size", value=2, min_value=1)
|
24 |
+
num_return_sequences = st.sidebar.number_input("Generated sequences", value=3, min_value=1)
|
25 |
+
|
26 |
+
gen_mode = st.sidebar.selectbox("Generation mode", ["beam search", "sampling"])
|
27 |
+
if gen_mode == "beam search":
|
28 |
+
num_beams = st.sidebar.number_input("Beam size", value=5, min_value=1)
|
29 |
+
early_stopping = st.sidebar.checkbox("Early stopping", value=True)
|
30 |
+
gen_params = {
|
31 |
+
"num_beams": num_beams,
|
32 |
+
"early_stopping": early_stopping
|
33 |
+
}
|
34 |
+
elif gen_mode == "sampling":
|
35 |
+
do_sample = True
|
36 |
+
top_k = st.sidebar.number_input("top_k", value=30, min_value=0)
|
37 |
+
top_p = st.sidebar.number_input("top_p", value=0, min_value=0)
|
38 |
+
temperature = st.sidebar.number_input("temperature", value=0.7, min_value=0.0)
|
39 |
+
gen_params = {
|
40 |
+
"do_sample": do_sample,
|
41 |
+
"top_k": top_k,
|
42 |
+
"top_p": top_p,
|
43 |
+
"temperature": temperature
|
44 |
+
}
|
45 |
+
|
46 |
+
def generate_caption(url):
|
47 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
48 |
+
inputs = feature_extractor(image, return_tensors="pt")
|
49 |
+
model = get_model()
|
50 |
+
model.eval()
|
51 |
+
generated_ids = model.generate(
|
52 |
+
inputs["pixel_values"],
|
53 |
+
max_length=20,
|
54 |
+
no_repeat_ngram_size=2,
|
55 |
+
num_return_sequences=3,
|
56 |
+
**gen_params
|
57 |
+
)
|
58 |
+
captions = tokenizer.batch_decode(
|
59 |
+
generated_ids,
|
60 |
+
skip_special_tokens=True,
|
61 |
+
)
|
62 |
+
return captions[0]
|
63 |
+
|
64 |
+
|
65 |
+
url = st.text_input(
|
66 |
+
"Insert your URL", "https://iheartcats.com/wp-content/uploads/2015/08/c84.jpg"
|
67 |
+
)
|
68 |
+
|
69 |
+
st.image(url)
|
70 |
+
|
71 |
+
if st.button("Run captioning"):
|
72 |
+
with st.spinner("Processing image..."):
|
73 |
+
caption = generate_caption(url)
|
74 |
+
st.text(caption)
|