adi-123's picture
Update app.py
368c17b verified
raw
history blame
1.77 kB
import streamlit as st
import requests
import os
# Hugging Face API setup
API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
HF_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
# Function to send the audio file to the Hugging Face API and get the classification result
def classify_audio(audio_file_path):
with open(audio_file_path, "rb") as audio_file:
response = requests.post(
"https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593",
headers=headers,
files={"file": audio_file}
)
return response.json()
# Streamlit interface
st.title("Audio Classifier")
# Define the folder where your audio files are located
audio_folder = "audio_files"
# List the audio files in the folder
audio_files = os.listdir(audio_folder)
audio_file_options = [f for f in audio_files if f.endswith(('.mp3', '.wav'))]
# Dropdown to select an audio file
selected_file = st.selectbox("Select an audio file:", audio_file_options)
import transformers
import tensorflow as tf
st.write(f"Streamlit version: {st.__version__}")
st.write(f"Transformers version: {transformers.__version__}")
st.write(f"TensorFlow version: {tf.__version__}")
# Button to classify the selected audio file
if st.button("Classify"):
# Get the full path of the selected audio file
audio_file_path = os.path.join(audio_folder, selected_file)
# Show the audio player
st.audio(audio_file_path)
# Get and display the classification results
results = classify_audio(audio_file_path)
st.write("Results:")
for result in results:
st.write(f"Label: {result['label']}, Confidence: {result['score']:.2f}")