Spaces:
Runtime error
Runtime error
import streamlit as st | |
import requests | |
import os | |
# Hugging Face API setup | |
API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593" | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
# Function to send the audio file to the Hugging Face API and get the classification result | |
def classify_audio(audio_file_path): | |
with open(audio_file_path, "rb") as audio_file: | |
response = requests.post( | |
"https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593", | |
headers=headers, | |
files={"file": audio_file} | |
) | |
return response.json() | |
# Streamlit interface | |
st.title("Audio Classifier") | |
# Define the folder where your audio files are located | |
audio_folder = "audio_files" | |
# List the audio files in the folder | |
audio_files = os.listdir(audio_folder) | |
audio_file_options = [f for f in audio_files if f.endswith(('.mp3', '.wav'))] | |
# Dropdown to select an audio file | |
selected_file = st.selectbox("Select an audio file:", audio_file_options) | |
import transformers | |
import tensorflow as tf | |
st.write(f"Streamlit version: {st.__version__}") | |
st.write(f"Transformers version: {transformers.__version__}") | |
st.write(f"TensorFlow version: {tf.__version__}") | |
# Button to classify the selected audio file | |
if st.button("Classify"): | |
# Get the full path of the selected audio file | |
audio_file_path = os.path.join(audio_folder, selected_file) | |
# Show the audio player | |
st.audio(audio_file_path) | |
# Get and display the classification results | |
results = classify_audio(audio_file_path) | |
st.write("Results:") | |
for result in results: | |
st.write(f"Label: {result['label']}, Confidence: {result['score']:.2f}") | |