File size: 8,262 Bytes
24d11d4
a388980
24d11d4
 
 
 
 
4c4fd67
48ea851
f177e4b
24d11d4
 
a388980
11dbfc8
a265324
 
0fe4fa3
11dbfc8
569bde3
fae93d9
 
 
 
 
569bde3
 
 
 
 
 
 
 
fae93d9
 
 
 
 
 
11dbfc8
 
fae93d9
 
11dbfc8
 
fae93d9
d16d319
fae93d9
3ebd805
abe7804
a3810f8
fae93d9
 
5741be4
 
fae93d9
5741be4
fae93d9
5741be4
fae93d9
5741be4
fae93d9
a3810f8
fae93d9
7764421
fae93d9
7764421
fae93d9
 
 
 
7764421
fae93d9
7764421
fae93d9
 
 
 
 
 
 
 
7764421
fae93d9
 
 
7457e8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b46dc11
 
 
 
fae93d9
 
 
 
f567f41
7457e8c
fae93d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ef570
fae93d9
7457e8c
7764421
 
fae93d9
 
b46dc11
fae93d9
e34af36
0dace21
 
7457e8c
e34af36
7457e8c
 
e34af36
7457e8c
0dace21
 
e34af36
 
b46dc11
0dace21
e34af36
 
 
0dace21
 
 
 
 
e34af36
 
0dace21
 
 
7457e8c
e34af36
7457e8c
 
 
 
0dace21
7457e8c
0dace21
 
b46dc11
0dace21
e34af36
0dace21
 
7457e8c
e34af36
7457e8c
 
 
 
 
 
 
 
 
0dace21
7457e8c
0dace21
fae93d9
 
 
 
 
11dbfc8
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
title: chat-ui
emoji: 🔥
colorFrom: purple
colorTo: purple
sdk: docker
pinned: false
license: apache-2.0
base_path: /chat
app_port: 3000
---

# Chat UI

![Chat UI repository thumbnail](https://huggingface.co/datasets/huggingface/documentation-images/raw/f038917dd40d711a72d654ab1abfc03ae9f177e6/chat-ui-repo-thumbnail.svg)

A chat interface using open source models, eg OpenAssistant. It is a SvelteKit app and it powers the [HuggingChat app on hf.co/chat](https://huggingface.co/chat).

0. [No Setup Deploy](#no-setup-deploy)
1. [Setup](#setup)
2. [Launch](#launch)
3. [Extra parameters](#extra-parameters)
4. [Deploying to a HF Space](#deploying-to-a-hf-space)
5. [Building](#building)

##  No Setup Deploy

If you don't want to configure, setup, and launch your own Chat UI yourself, you can use this option as a fast deploy alternative.

You can deploy your own customized Chat UI instance with any supported LLM of your choice with only a few clicks to Hugging Face Spaces thanks to the Chat UI Spaces Docker template. Get started [here](https://huggingface.co/new-space?template=huggingchat/chat-ui-template).

Read the full tutorial [here](https://huggingface.co/docs/hub/spaces-sdks-docker-chatui#chatui-on-spaces).

## Setup

The default config for Chat UI is stored in the `.env` file. You will need to override some values to get Chat UI to run locally. This is done in `.env.local`.

Start by creating a `.env.local` file in the root of the repository. The bare minimum config you need to get Chat UI to run locally is the following:

```bash
MONGODB_URL=<the URL to your mongoDB instance>
HF_ACCESS_TOKEN=<your access token>
```

### Database

The chat history is stored in a MongoDB instance, and having a DB instance available is needed for Chat UI to work.

You can use a local MongoDB instance. The easiest way is to spin one up using docker:

```bash
docker run -d -p 27017:27017 --name mongo-chatui mongo:latest
```

In which case the url of your DB will be `MONGODB_URL=mongodb://localhost:27017`.

Alternatively, you can use a [free MongoDB Atlas](https://www.mongodb.com/pricing) instance for this, Chat UI should fit comfortably within the free tier. After which you can set the `MONGODB_URL` variable in `.env.local` to match your instance.

### Hugging Face Access Token

You will need a Hugging Face access token to run Chat UI locally, using the remote inference endpoints. You can get one from [your Hugging Face profile](https://huggingface.co/settings/tokens).

## Launch

After you're done with the `.env.local` file you can run Chat UI locally with:

```bash
npm install
npm run dev
```

## Extra parameters

### OpenID connect

The login feature is disabled by default and users are attributed a unique ID based on their browser. But if you want to use OpenID to authenticate your users, you can add the following to your `.env.local` file:

```bash
OPENID_PROVIDER_URL=<your OIDC issuer>
OPENID_CLIENT_ID=<your OIDC client ID>
OPENID_CLIENT_SECRET=<your OIDC client secret>
```

These variables will enable the openID sign-in modal for users.

### Theming

You can use a few environment variables to customize the look and feel of chat-ui. These are by default:

```
PUBLIC_APP_NAME=ChatUI
PUBLIC_APP_ASSETS=chatui
PUBLIC_APP_COLOR=blue
PUBLIC_APP_DATA_SHARING=
PUBLIC_APP_DISCLAIMER=
```

- `PUBLIC_APP_NAME` The name used as a title throughout the app.
- `PUBLIC_APP_ASSETS` Is used to find logos & favicons in `static/$PUBLIC_APP_ASSETS`, current options are `chatui` and `huggingchat`.
- `PUBLIC_APP_COLOR` Can be any of the [tailwind colors](https://tailwindcss.com/docs/customizing-colors#default-color-palette).
- `PUBLIC_APP_DATA_SHARING` Can be set to 1 to add a toggle in the user settings that lets your users opt-in to data sharing with models creator.
- `PUBLIC_APP_DISCLAIMER` If set to 1, we show a disclaimer about generated outputs on login.

### Web Search

You can enable the web search by adding either `SERPER_API_KEY` ([serper.dev](https://serper.dev/)) or `SERPAPI_KEY` ([serpapi.com](https://serpapi.com/)) to your `.env.local`.

### Custom models

You can customize the parameters passed to the model or even use a new model by updating the `MODELS` variable in your `.env.local`. The default one can be found in `.env` and looks like this :

```

MODELS=`[
  {
    "name": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
    "datasetName": "OpenAssistant/oasst1",
    "description": "A good alternative to ChatGPT",
    "websiteUrl": "https://open-assistant.io",
    "userMessageToken": "<|prompter|>",
    "assistantMessageToken": "<|assistant|>",
    "messageEndToken": "</s>",
    "preprompt": "Below are a series of dialogues between various people and an AI assistant. The AI tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble-but-knowledgeable. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed. It also tries to avoid giving false or misleading information, and it caveats when it isn't entirely sure about the right answer. That said, the assistant is practical and really does its best, and doesn't let caution get too much in the way of being useful.\n-----\n",
    "promptExamples": [
      {
        "title": "Write an email from bullet list",
        "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
      }, {
        "title": "Code a snake game",
        "prompt": "Code a basic snake game in python, give explanations for each step."
      }, {
        "title": "Assist in a task",
        "prompt": "How do I make a delicious lemon cheesecake?"
      }
    ],
    "parameters": {
      "temperature": 0.9,
      "top_p": 0.95,
      "repetition_penalty": 1.2,
      "top_k": 50,
      "truncate": 1000,
      "max_new_tokens": 1024
    }
  }
]`

```

You can change things like the parameters, or customize the preprompt to better suit your needs. You can also add more models by adding more objects to the array, with different preprompts for example.

#### Running your own models using a custom endpoint

If you want to, you can even run your own models locally, by having a look at our endpoint project, [text-generation-inference](https://github.com/huggingface/text-generation-inference). You can then add your own endpoints to the `MODELS` variable in `.env.local`, by adding an `"endpoints"` key for each model in `MODELS`.

```

{
// rest of the model config here
"endpoints": [{"url": "https://HOST:PORT/generate_stream"}]
}

```

If `endpoints` is left unspecified, ChatUI will look for the model on the hosted Hugging Face inference API using the model name.

#### Custom endpoint authorization

Custom endpoints may require authorization, depending on how you configure them. Authentication will usually be set either with `Basic` or `Bearer`.

For `Basic` we will need to generate a base64 encoding of the username and password.

`echo -n "USER:PASS" | base64`

> VVNFUjpQQVNT

For `Bearer` you can use a token, which can be grabbed from [here](https://huggingface.co/settings/tokens).

You can then add the generated information and the `authorization` parameter to your `.env.local`.

```

"endpoints": [
{
"url": "https://HOST:PORT/generate_stream",
"authorization": "Basic VVNFUjpQQVNT",
}
]

```

#### Models hosted on multiple custom endpoints

If the model being hosted will be available on multiple servers/instances add the `weight` parameter to your `.env.local`. The `weight` will be used to determine the probability of requesting a particular endpoint.

```

"endpoints": [
{
"url": "https://HOST:PORT/generate_stream",
"weight": 1
}
{
"url": "https://HOST:PORT/generate_stream",
"weight": 2
}
...
]

```

## Deploying to a HF Space

Create a `DOTENV_LOCAL` secret to your HF space with the content of your .env.local, and they will be picked up automatically when you run.

## Building

To create a production version of your app:

```bash
npm run build
```

You can preview the production build with `npm run preview`.

> To deploy your app, you may need to install an [adapter](https://kit.svelte.dev/docs/adapters) for your target environment.