Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- .gitattributes +1 -0
- Code Civil vectorised.json +3 -0
- app.py +54 -10
- requirements.txt +6 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Code[[:space:]]Civil[[:space:]]vectorised.json filter=lfs diff=lfs merge=lfs -text
|
Code Civil vectorised.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b1bd358abd17993d9c49fd622ce5e353f35eb1d815d87ead88c914e1db18041
|
3 |
+
size 47281293
|
app.py
CHANGED
@@ -1,12 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -14,8 +45,17 @@ def respond(
|
|
14 |
max_tokens,
|
15 |
temperature,
|
16 |
top_p,
|
|
|
|
|
17 |
):
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
for val in history:
|
21 |
if val[0]:
|
@@ -26,7 +66,8 @@ def respond(
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
29 |
-
|
|
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
@@ -35,15 +76,19 @@ def respond(
|
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
demo = gr.ChatInterface(
|
46 |
-
respond
|
|
|
|
|
47 |
additional_inputs=[
|
48 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
@@ -58,6 +103,5 @@ demo = gr.ChatInterface(
|
|
58 |
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import json
|
4 |
+
import numpy as np
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
"""
|
|
|
11 |
|
12 |
+
# Load embeddings from a JSON file
|
13 |
+
def load_embeddings(file_path):
|
14 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
15 |
+
return json.load(file)
|
16 |
|
17 |
+
# Function to get relevant articles based on user query
|
18 |
+
def get_relevant_documents(query, embeddings_data, model, top_k=3):
|
19 |
+
query_embedding = model.encode(query)
|
20 |
+
similarities = []
|
21 |
+
|
22 |
+
for entry in embeddings_data:
|
23 |
+
embedding = np.array(entry['embedding'])
|
24 |
+
similarity = cosine_similarity([query_embedding], [embedding])[0][0]
|
25 |
+
similarities.append((entry, similarity))
|
26 |
+
|
27 |
+
# Sort by similarity and return top_k relevant entries
|
28 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
29 |
+
top_entries = [entry for entry, _ in similarities[:top_k]]
|
30 |
+
|
31 |
+
return top_entries
|
32 |
+
|
33 |
+
# Function to format relevant documents into a string
|
34 |
+
def format_documents(documents):
|
35 |
+
formatted = ""
|
36 |
+
for doc in documents:
|
37 |
+
formatted += f"Relevant article: {doc['name']}\n{doc['content']}\n\n"
|
38 |
+
return formatted
|
39 |
+
|
40 |
+
# Main chatbot function that integrates RAG
|
41 |
def respond(
|
42 |
message,
|
43 |
history: list[tuple[str, str]],
|
|
|
45 |
max_tokens,
|
46 |
temperature,
|
47 |
top_p,
|
48 |
+
embeddings_data,
|
49 |
+
model
|
50 |
):
|
51 |
+
# Search for relevant documents based on user input
|
52 |
+
relevant_docs = get_relevant_documents(message, embeddings_data, model)
|
53 |
+
retrieved_context = format_documents(relevant_docs)
|
54 |
+
|
55 |
+
# Add the retrieved context as part of the system message
|
56 |
+
system_message_with_context = system_message + "\n\n" + "Relevant documents:\n" + retrieved_context
|
57 |
+
|
58 |
+
messages = [{"role": "system", "content": system_message_with_context}]
|
59 |
|
60 |
for val in history:
|
61 |
if val[0]:
|
|
|
66 |
messages.append({"role": "user", "content": message})
|
67 |
|
68 |
response = ""
|
69 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
70 |
+
|
71 |
for message in client.chat_completion(
|
72 |
messages,
|
73 |
max_tokens=max_tokens,
|
|
|
76 |
top_p=top_p,
|
77 |
):
|
78 |
token = message.choices[0].delta.content
|
|
|
79 |
response += token
|
80 |
yield response
|
81 |
|
82 |
+
# Load embeddings and model once at startup
|
83 |
+
embeddings_file = 'Code Civil vectorised.json'
|
84 |
+
embeddings_data = load_embeddings(embeddings_file)
|
85 |
+
embedding_model = SentenceTransformer('Lajavaness/bilingual-embedding-small', trust_remote_code=True)
|
86 |
+
|
87 |
+
# Gradio interface
|
88 |
demo = gr.ChatInterface(
|
89 |
+
lambda message, history, system_message, max_tokens, temperature, top_p: respond(
|
90 |
+
message, history, system_message, max_tokens, temperature, top_p, embeddings_data, embedding_model
|
91 |
+
),
|
92 |
additional_inputs=[
|
93 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
94 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
|
103 |
],
|
104 |
)
|
105 |
|
|
|
106 |
if __name__ == "__main__":
|
107 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
gradio==3.25.0
|
3 |
+
huggingface_hub==0.22.2
|
4 |
+
sentence-transformers==2.2.2
|
5 |
+
scikit-learn==1.3.0
|
6 |
+
numpy==1.24.2
|