minimal / app.py
agatam's picture
final model
6f77a08
raw
history blame
681 Bytes
__all__ = ['is_cat', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
# Cell
from fastai.vision.all import *
import gradio as gr
def is_cat(x): return x[0].isupper()
# Cell
learn = load_learner('model.pkl')
# Cell
categories = ('Dog', 'Cat')
def classify_image(img):
pred,idx,probs = learn.predict(img)
return dict(zip(categories, map(float, probs)))
classify_image(im)
# Cell
image = gr.inputs.Image(shape=(192, 192))
label = gr.outputs.label()
examples = ['dog.jpg', 'dog2.jpg', 'test3.jpg', 'test4.jpg', 'test5.jpg']
intf = gr.Interface(f=classify_image, inputs=image, outputs=label, examples=examples)
intf.launch(inline=False)