File size: 13,040 Bytes
3cad23b
 
 
 
 
 
19bcd88
3cad23b
19bcd88
 
3cad23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6de115
 
 
 
3cad23b
c9d2369
 
b6de115
c9d2369
 
 
 
 
d999bca
3cad23b
 
 
d999bca
 
3cad23b
 
c9d2369
3cad23b
 
 
 
 
d999bca
c9d2369
 
3cad23b
b6de115
 
 
 
 
 
 
 
 
 
 
3cad23b
 
 
 
c9d2369
 
3cad23b
 
 
 
 
 
 
 
 
e5465b9
 
3cad23b
 
 
 
 
 
7791c1c
3cad23b
7791c1c
3cad23b
c9d2369
3cad23b
 
 
c9d2369
 
b6de115
 
c9d2369
047b4f4
3cad23b
 
 
 
 
c9d2369
b6de115
3cad23b
 
c9d2369
b6de115
 
c9d2369
3cad23b
 
c9d2369
b6de115
 
3cad23b
 
 
 
 
 
c9d2369
b6de115
3cad23b
 
 
 
c9d2369
 
b6de115
 
 
c9d2369
 
 
b6de115
c9d2369
b6de115
 
 
 
07b20fe
b6de115
3cad23b
c9d2369
 
 
 
 
 
b6de115
 
 
 
 
 
 
 
 
 
 
 
 
c9d2369
 
 
b6de115
3cad23b
c9d2369
b6de115
c9d2369
 
 
 
 
 
 
d999bca
c9d2369
 
 
 
d999bca
c9d2369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cad23b
c9d2369
3cad23b
c9d2369
 
3cad23b
c9d2369
3cad23b
d999bca
3cad23b
b6de115
3cad23b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import json

import gradio as gr

from flow import full_flow

from utils import use_cost_tracker, get_costs, compute_hash

with open('schemas.json', 'r') as f:
    SCHEMAS = json.load(f)

def parse_raw_messages(messages_raw):
    messages_clean = []
    messages_agora = []

    for message in messages_raw:
        role = message['role']
        message_without_role = dict(message)
        del message_without_role['role']

        messages_agora.append({
            'role': role,
            'content': '```\n' + json.dumps(message_without_role, indent=2) + '\n```'
        })

        if message.get('status') == 'error':
            messages_clean.append({
                'role': role,
                'content': f"Error: {message['message']}"
            })
        else:
            messages_clean.append({
                'role': role,
                'content': message['body']
            })

    return messages_clean, messages_agora

def main():
    with gr.Blocks() as demo:
        gr.Markdown("# 🏛️Agora Demo")
        gr.Markdown("[Agora](https://agoraprotocol.org/) is a protocol for efficient communication between heterogeneous agents.")
        gr.Markdown("In short, with Agora very different agents can exchange messages efficiently, even if they've never interacted before.")
        gr.Markdown("This demo shows how Agora solves various tasks through a mix of natural language and structured communication.")

        chosen_task = gr.Dropdown(choices=[
            (v['display_name'], k) for k, v in SCHEMAS.items()
        ], label="Choose a Demo", value="weather_forecast")

        @gr.render(inputs=[chosen_task])
        def render2(chosen_task):
            gr.Markdown('**Description**: ' + SCHEMAS[chosen_task]["description"])

        #custom_task = gr.Checkbox(label="Override Demo Parameters")

        STATE_TRACKER = {}
        
        @gr.render(inputs=[chosen_task])
        def render(chosen_task):
            if STATE_TRACKER.get('chosen_task') != chosen_task:
                STATE_TRACKER['chosen_task'] = chosen_task
                for k, v in SCHEMAS[chosen_task]['schema'].items():
                    if isinstance(v, str):
                        STATE_TRACKER[k] = v
                    else:
                        STATE_TRACKER[k] = json.dumps(v, indent=2)

            if False: # custom_task is disabled for now
                gr.Markdown('#### Custom Demo Parameters')
                gr.Markdown('You can override the default parameters for the demo. Note: recommended for advanced users only.')
                gr.Text(label="Description", value=STATE_TRACKER["description"], interactive=True).change(lambda x: STATE_TRACKER.update({'description': x}))
                
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        gr.TextArea(label="Input Schema", value=STATE_TRACKER["input"], interactive=True).change(lambda x: STATE_TRACKER.update({'input': x}))
                    with gr.Column(scale=1):
                        gr.TextArea(label="Output Schema", value=STATE_TRACKER["output"], interactive=True).change(lambda x: STATE_TRACKER.update({'output': x}))
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        gr.TextArea(label="Tools", value=STATE_TRACKER["tools"], interactive=True).change(lambda x: STATE_TRACKER.update({'tools': x}))
                    with gr.Column(scale=1):
                        gr.TextArea(label="Examples", value=STATE_TRACKER["examples"], interactive=True).change(lambda x: STATE_TRACKER.update({'examples': x}))

        model_options = [
            ('GPT 4o (Camel AI)', 'gpt-4o'),
            ('GPT 4o-mini (Camel AI)', 'gpt-4o-mini'),
            ('Claude 3 Sonnet (LangChain)', 'claude-3-5-sonnet-latest'),
            ('Claude 3 Haiku (LangChain)', 'claude-3-5-haiku-latest'),
            ('Gemini 1.5 Pro (Google GenAI)', 'gemini-1.5-pro'),
            ('Llama3 405B (Sambanova + LangChain)', 'llama3-405b')
        ]

        fallback_image = ''

        images = {
            'gpt-4o': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
            'gpt-4o-mini': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
            'claude-3-5-sonnet-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
            'claude-3-5-haiku-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
            'gemini-1.5-pro': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/google-gemini-icon.png',
            'llama3-405b': 'https://www.designstub.com/png-resources/wp-content/uploads/2023/03/meta-icon-social-media-flat-graphic-vector-3-novem.png'
        }

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                alice_model_dd = gr.Dropdown(label="Alice Agent", choices=model_options, value="gpt-4o")
            with gr.Column(scale=1):
                bob_model_dd = gr.Dropdown(label="Bob Agent", choices=model_options, value="claude-3-5-sonnet-latest")
        
        

        @gr.render(inputs=[alice_model_dd, bob_model_dd])
        def render_with_images(alice_model, bob_model):
            button = gr.Button('Start', elem_id='start_button')
            gr.Markdown('## Natural Language')
            gr.Markdown("When Agora operates without a protocol, it uses the LLM to send/receive messages.")
            gr.Markdown("This is particularly useful for rare communications, where establishing a protocol would be superfluous.")

            avatar_images = [images.get(bob_model, fallback_image), images.get(alice_model, fallback_image)]
            chatbot_nl = gr.Chatbot(type="messages", avatar_images=avatar_images)

            with gr.Accordion(label="Raw Messages", open=False):
                chatbot_nl_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
        
            gr.Markdown('## Negotiation')
            gr.Markdown("If the agents realize that they have been communicating frequently, they negotiate a protocol.")
            chatbot_negotiation = gr.Chatbot(type="messages", avatar_images=avatar_images)

            gr.Markdown('## Protocol')
            gr.Markdown("The agents now have an unambiguous protocol to follow. This reduces redundant communications and mistakes.")
            gr.Markdown("The protocol is stored into a Protocol Document and is uniquely identified by its SHA1 hash.")
            protocol_hash_result = gr.Text(interactive=False, label="Protocol Hash")
            protocol_result = gr.TextArea(interactive=False, label="Protocol")

            gr.Markdown('## Implementation')
            gr.Markdown("If they desire, Alice and Bob can independently implement their side of the protocol as routines (e.g. Python modules).")
            gr.Markdown("The routines handle the protocol communication without needing to invoke the LLM.")
            with gr.Row():
                with gr.Column(scale=1):
                    alice_implementation = gr.TextArea(interactive=False, label="Alice Implementation")
                with gr.Column(scale=1):
                    bob_implementation = gr.TextArea(interactive=False, label="Bob Implementation")

            gr.Markdown('## Structured Communication')
            gr.Markdown("The agents now communicate using the routines. This is faster, more reliable and cheaper than using the LLM.")
            structured_communication = gr.Chatbot(type="messages", avatar_images=avatar_images)
            
            with gr.Accordion(label="Raw Messages", open=False):
                structured_communication_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
            
            gr.Markdown('## Cost')
            gr.Markdown("Negotiation & implementation have a higher upfront cost, but once they're done, the cost of using a routine is neglible compared to invoking an LLM.")
            gr.Markdown("This means that, for moderate to high frequency communications, negotiation & implementation with Agora is way cheaper than using natural language alone.")
            gr.Markdown("Note: negotiated protocols can be reused for similar tasks and shared with other agents, which further reduces costs.")
            cost_info = gr.State(value=None)
            #cost_info = gr.TextArea(interactive=False, label="Cost")

            query_slider = gr.Slider(label="Expected number of queries", minimum=1, maximum=10_000, step=1, value=50, interactive=True)
            cost_display = gr.Markdown('')

            gr.Markdown('## Next Steps')
            gr.Markdown("This demo showcases a simple negotiation-and-implementation flow between two agents.")
            gr.Markdown("In practice, Agora can be used to build entire networks of agents, with way more complex tasks.")
            gr.Markdown("Check out our [paper](https://arxiv.org/pdf/2410.11905.pdf) for an example of a network of 100 agents, all interconnected!")
            gr.Markdown("Also, don't forget us to follow us on [Twitter](https://twitter.com/Agora_Protocol) and join our [Discord](https://discord.gg/MXmfhwQ4FB)!")

            def render_info(query_count, cost_info):
                if not cost_info:
                    return ''
                natural_cost = cost_info['conversation'] * query_count
                agora_cost = cost_info['negotiation'] + cost_info['programming']

                cost_message = ''
                cost_message += f"""
|Operation|Cost (USD)|
|---|---|
|Natural language conversation|{cost_info["conversation"]:.4f}|
|Negotiation|{cost_info["negotiation"]:.4f}|
|Programming|{cost_info["programming"]:.4f}|

Cost of {query_count} queries:
- With natural language: {natural_cost:.4f} USD
- With Agora: {agora_cost:.4f} USD

"""

                if natural_cost < agora_cost:
                    factor = agora_cost / natural_cost
                    cost_message += f'#### Natural language is {factor:.2f}x cheaper than Agora.'
                else:
                    factor = natural_cost / agora_cost
                    cost_message += f'## Agora is {factor:.2f}x cheaper than natural language.'

                return cost_message

            cost_info.change(render_info, [query_slider, cost_info], [cost_display])
            query_slider.change(render_info, [query_slider, cost_info], [cost_display])


            def respond(chosen_task, alice_model, bob_model, query_count):
                with use_cost_tracker():
                    yield gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), \
                        None, None, None, None, None, None, None, None, None, None, None

                    if False: # custom_task is disabled for now
                        schema = dict(STATE_TRACKER)
                        for k, v in schema.items():
                            if isinstance(v, str):
                                try:
                                    schema[k] = json.loads(v)
                                except:
                                    pass
                    else:
                        schema = SCHEMAS[chosen_task]["schema"]

                    for nl_messages_raw, negotiation_messages, structured_messages_raw, protocol, alice_implementation, bob_implementation in full_flow(schema, alice_model, bob_model):
                        nl_messages_clean, nl_messages_agora = parse_raw_messages(nl_messages_raw)
                        structured_messages_clean, structured_messages_agora = parse_raw_messages(structured_messages_raw)
                        protocol_hash = compute_hash(protocol) if protocol else None
                        yield gr.update(), gr.update(), gr.update(), None, None, nl_messages_clean, nl_messages_agora, negotiation_messages, structured_messages_clean, structured_messages_agora, protocol, protocol_hash, alice_implementation, bob_implementation

                    #yield from full_flow(schema, alice_model, bob_model)

                    cost_data = get_costs()
                    cost_data_formatted = render_info(query_count, cost_data)

                    yield gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), cost_data, cost_data_formatted, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()

            button.click(respond, [chosen_task, alice_model_dd, bob_model_dd, query_slider], [button, alice_model_dd, bob_model_dd, cost_info, cost_display, chatbot_nl, chatbot_nl_raw, chatbot_negotiation, structured_communication, structured_communication_raw, protocol_result, protocol_hash_result, alice_implementation, bob_implementation])

    demo.launch(share=True)


if __name__ == '__main__':
    main()