File size: 7,498 Bytes
f69d338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
from transformers import pipeline
import pandas as pd
import PyPDF2
import pdfplumber
import torch
import timm
from PIL import Image

# Load pre-trained model for zero-shot classification
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

# Pre-trained model for X-ray analysis (example with a model from timm library)
image_model = timm.create_model('resnet50', pretrained=True)
image_model.eval()

# Initialize patient database
patients_db = []

# Disease and medication mapping
disease_details = {
    "anemia": {
        "medication": "Iron supplements (e.g., Ferrous sulfate)",
        "precaution": "Increase intake of iron-rich foods like spinach and red meat."
    },
    "viral infection": {
        "medication": "Antiviral drugs (e.g., Oseltamivir for flu)",
        "precaution": "Rest, stay hydrated, and avoid close contact with others."
    },
    "liver disease": {
        "medication": "Hepatoprotective drugs (e.g., Ursodeoxycholic acid)",
        "precaution": "Avoid alcohol and maintain a balanced diet."
    },
    "kidney disease": {
        "medication": "Angiotensin-converting enzyme inhibitors (e.g., Lisinopril)",
        "precaution": "Monitor salt intake and stay hydrated."
    },
    "diabetes": {
        "medication": "Metformin or insulin therapy",
        "precaution": "Follow a low-sugar diet and exercise regularly."
    },
    "hypertension": {
        "medication": "Antihypertensive drugs (e.g., Amlodipine)",
        "precaution": "Reduce salt intake and manage stress."
    },
    "COVID-19": {
        "medication": "Supportive care, antiviral drugs (e.g., Remdesivir in severe cases)",
        "precaution": "Follow isolation protocols, wear a mask, and stay hydrated."
    },
    "pneumonia": {
        "medication": "Antibiotics (e.g., Amoxicillin) if bacterial",
        "precaution": "Rest, avoid smoking, and stay hydrated."
    }
}

# Function to register patients
def register_patient(name, age, gender):
    patient_id = len(patients_db) + 1
    patients_db.append({
        "ID": patient_id, 
        "Name": name, 
        "Age": age, 
        "Gender": gender, 
        "Symptoms": "", 
        "Diagnosis": "", 
        "Action Plan": "", 
        "Medications": "", 
        "Precautions": "",
        "Tests": ""
    })
    return f"βœ… Patient {name} registered successfully. Patient ID: {patient_id}"

# Function to analyze text reports
def analyze_report(patient_id, report_text):
    candidate_labels = list(disease_details.keys())
    result = classifier(report_text, candidate_labels)
    diagnosis = result['labels'][0]

    # Fetch medication and precaution
    medication = disease_details[diagnosis]["medication"]
    precaution = disease_details[diagnosis]["precaution"]
    action_plan = f"You might have {diagnosis}. Please consult a doctor for confirmation."

    # Store diagnosis in the database
    for patient in patients_db:
        if patient["ID"] == patient_id:
            patient["Diagnosis"] = diagnosis
            patient["Action Plan"] = action_plan
            patient["Medications"] = medication
            patient["Precautions"] = precaution
            break
    
    return (f"πŸ” Diagnosis: {diagnosis}\n"
            f"🩺 Medications: {medication}\n"
            f"⚠️ Precautions: {precaution}\n"
            f"πŸ’‘ {action_plan}")

# Function to extract text from PDF reports
def extract_pdf_report(pdf):
    text = ""
    with pdfplumber.open(pdf.name) as pdf_file:
        for page in pdf_file.pages:
            text += page.extract_text()
    return text

# Function to analyze uploaded images (X-ray/CT-scan)
def analyze_image(patient_id, img):
    image = Image.open(img).convert('RGB')
    transform = torch.nn.Sequential(
        torch.nn.Upsample(size=(224, 224)),
        torch.nn.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    )
    image_tensor = transform(torch.unsqueeze(torch.tensor(image), 0))

    # Run the image through the model (for simplicity, assuming ResNet50 output)
    output = image_model(image_tensor)
    _, predicted = torch.max(output, 1)

    # Map prediction to a label
    labels = {0: "Normal", 1: "Pneumonia", 2: "Liver Disorder", 3: "COVID-19"}
    diagnosis = labels.get(predicted.item(), "Unknown")

    # Store diagnosis in the database
    for patient in patients_db:
        if patient["ID"] == patient_id:
            patient["Diagnosis"] = diagnosis
            break
    
    return f"πŸ” Diagnosis from image: {diagnosis}"

# Function to display the dashboard
def show_dashboard():
    if not patients_db:
        return "No patient records available."
    return pd.DataFrame(patients_db)

# Text-to-Image model interface
def generate_image(prompt):
    # This assumes you're using a pre-trained model for text-to-image generation
    return gr.load("models/ZB-Tech/Text-to-Image").launch()

# Gradio interface for patient registration
patient_interface = gr.Interface(
    fn=register_patient,
    inputs=[
        gr.Textbox(label="Patient Name", placeholder="Enter the patient's full name"),
        gr.Number(label="Age"),  
        gr.Radio(label="Gender", choices=["Male", "Female", "Other"])
    ],
    outputs="text",
    description="Register a new patient"
)

# Gradio interface for report analysis (text input)
report_interface = gr.Interface(
    fn=analyze_report,
    inputs=[
        gr.Number(label="Patient ID"),  
        gr.Textbox(label="Report Text", placeholder="Paste the text from your report here")
    ],
    outputs="text",
    description="Analyze blood, LFT, or other medical reports"
)

# Gradio interface for PDF report analysis (PDF upload)
pdf_report_interface = gr.Interface(
    fn=extract_pdf_report,
    inputs=gr.File(label="Upload PDF Report"),
    outputs="text",
    description="Extract and analyze text from PDF reports"
)

# Gradio interface for X-ray/CT-scan image analysis
image_interface = gr.Interface(
    fn=analyze_image,
    inputs=[
        gr.Number(label="Patient ID"),
        gr.Image(type="filepath", label="Upload X-ray or CT-Scan Image")
    ],
    outputs="text",
    description="Analyze X-ray or CT-scan images for diagnosis"
)

# Gradio interface for the dashboard
dashboard_interface = gr.Interface(
    fn=show_dashboard,
    inputs=None,
    outputs="dataframe",
    description="View patient reports and history"
)

# Gradio interface for text-to-image
text_to_image_interface = gr.Interface(
    fn=generate_image,
    inputs=gr.Textbox(label="Enter a prompt to generate an image"),
    outputs="image",
    description="Generate images from text prompts"
)

# Organize the layout using Blocks
with gr.Blocks() as demo:
    gr.Markdown("# Medical Report and Image Analyzer + Text-to-Image Generator")
    choice = gr.Radio(label="Choose Functionality", choices=["Medical Reports", "Text-to-Image"], value="Medical Reports")
    
    with gr.Column():
        with gr.TabItem("Patient Registration"):
            patient_interface.render()
        with gr.TabItem("Analyze Report (Text)"):
            report_interface.render()
        with gr.TabItem("Analyze Report (PDF)"):
            pdf_report_interface.render()
        with gr.TabItem("Analyze Image (X-ray/CT)"):
            image_interface.render()
        with gr.TabItem("Dashboard"):
            dashboard_interface.render()
        with gr.TabItem("Text-to-Image"):
            text_to_image_interface.render()

demo.launch(share=True)