Spaces:
Running
on
Zero
Running
on
Zero
aifeifei798
commited on
Upload 4 files
Browse files- app.py +15 -266
- feifeilib/feifeiflorencebase.py +236 -0
- requirements.txt +1 -2
app.py
CHANGED
@@ -1,267 +1,16 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
import subprocess
|
17 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
18 |
-
|
19 |
-
models = {
|
20 |
-
'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval()
|
21 |
-
}
|
22 |
-
|
23 |
-
processors = {
|
24 |
-
'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
25 |
-
}
|
26 |
-
|
27 |
-
|
28 |
-
DESCRIPTION = "# [Florence-2 Image to Flux Prompt](https://huggingface.co/microsoft/Florence-2-base)"
|
29 |
-
|
30 |
-
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
31 |
-
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
32 |
-
|
33 |
-
def fig_to_pil(fig):
|
34 |
-
buf = io.BytesIO()
|
35 |
-
fig.savefig(buf, format='png')
|
36 |
-
buf.seek(0)
|
37 |
-
return Image.open(buf)
|
38 |
-
|
39 |
-
@spaces.GPU
|
40 |
-
def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'):
|
41 |
-
model = models[model_id]
|
42 |
-
processor = processors[model_id]
|
43 |
-
if text_input is None:
|
44 |
-
prompt = task_prompt
|
45 |
-
else:
|
46 |
-
prompt = task_prompt + text_input
|
47 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
48 |
-
generated_ids = model.generate(
|
49 |
-
input_ids=inputs["input_ids"],
|
50 |
-
pixel_values=inputs["pixel_values"],
|
51 |
-
max_new_tokens=1024,
|
52 |
-
early_stopping=False,
|
53 |
-
do_sample=False,
|
54 |
-
num_beams=3,
|
55 |
-
)
|
56 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
57 |
-
parsed_answer = processor.post_process_generation(
|
58 |
-
generated_text,
|
59 |
-
task=task_prompt,
|
60 |
-
image_size=(image.width, image.height)
|
61 |
-
)
|
62 |
-
return parsed_answer
|
63 |
-
|
64 |
-
def plot_bbox(image, data):
|
65 |
-
fig, ax = plt.subplots()
|
66 |
-
ax.imshow(image)
|
67 |
-
for bbox, label in zip(data['bboxes'], data['labels']):
|
68 |
-
x1, y1, x2, y2 = bbox
|
69 |
-
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
70 |
-
ax.add_patch(rect)
|
71 |
-
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
72 |
-
ax.axis('off')
|
73 |
-
return fig
|
74 |
-
|
75 |
-
def draw_polygons(image, prediction, fill_mask=False):
|
76 |
-
|
77 |
-
draw = ImageDraw.Draw(image)
|
78 |
-
scale = 1
|
79 |
-
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
80 |
-
color = random.choice(colormap)
|
81 |
-
fill_color = random.choice(colormap) if fill_mask else None
|
82 |
-
for _polygon in polygons:
|
83 |
-
_polygon = np.array(_polygon).reshape(-1, 2)
|
84 |
-
if len(_polygon) < 3:
|
85 |
-
print('Invalid polygon:', _polygon)
|
86 |
-
continue
|
87 |
-
_polygon = (_polygon * scale).reshape(-1).tolist()
|
88 |
-
if fill_mask:
|
89 |
-
draw.polygon(_polygon, outline=color, fill=fill_color)
|
90 |
-
else:
|
91 |
-
draw.polygon(_polygon, outline=color)
|
92 |
-
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
93 |
-
return image
|
94 |
-
|
95 |
-
def convert_to_od_format(data):
|
96 |
-
bboxes = data.get('bboxes', [])
|
97 |
-
labels = data.get('bboxes_labels', [])
|
98 |
-
od_results = {
|
99 |
-
'bboxes': bboxes,
|
100 |
-
'labels': labels
|
101 |
-
}
|
102 |
-
return od_results
|
103 |
-
|
104 |
-
def draw_ocr_bboxes(image, prediction):
|
105 |
-
scale = 1
|
106 |
-
draw = ImageDraw.Draw(image)
|
107 |
-
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
108 |
-
for box, label in zip(bboxes, labels):
|
109 |
-
color = random.choice(colormap)
|
110 |
-
new_box = (np.array(box) * scale).tolist()
|
111 |
-
draw.polygon(new_box, width=3, outline=color)
|
112 |
-
draw.text((new_box[0]+8, new_box[1]+2),
|
113 |
-
"{}".format(label),
|
114 |
-
align="right",
|
115 |
-
fill=color)
|
116 |
-
return image
|
117 |
-
|
118 |
-
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-base'):
|
119 |
-
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
120 |
-
if task_prompt == 'Caption':
|
121 |
-
task_prompt = '<CAPTION>'
|
122 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
123 |
-
return results, None
|
124 |
-
elif task_prompt == 'Detailed Caption':
|
125 |
-
task_prompt = '<DETAILED_CAPTION>'
|
126 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
127 |
-
return results, None
|
128 |
-
elif task_prompt == 'More Detailed Caption':
|
129 |
-
task_prompt = '<MORE_DETAILED_CAPTION>'
|
130 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
131 |
-
results = results['<MORE_DETAILED_CAPTION>']
|
132 |
-
return results, None
|
133 |
-
elif task_prompt == 'Caption + Grounding':
|
134 |
-
task_prompt = '<CAPTION>'
|
135 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
136 |
-
text_input = results[task_prompt]
|
137 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
138 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
139 |
-
results['<CAPTION>'] = text_input
|
140 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
141 |
-
return results, fig_to_pil(fig)
|
142 |
-
elif task_prompt == 'Detailed Caption + Grounding':
|
143 |
-
task_prompt = '<DETAILED_CAPTION>'
|
144 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
145 |
-
text_input = results[task_prompt]
|
146 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
147 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
148 |
-
results['<DETAILED_CAPTION>'] = text_input
|
149 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
150 |
-
return results, fig_to_pil(fig)
|
151 |
-
elif task_prompt == 'More Detailed Caption + Grounding':
|
152 |
-
task_prompt = '<MORE_DETAILED_CAPTION>'
|
153 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
154 |
-
text_input = results[task_prompt]
|
155 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
156 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
157 |
-
results['<MORE_DETAILED_CAPTION>'] = text_input
|
158 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
159 |
-
return results, fig_to_pil(fig)
|
160 |
-
elif task_prompt == 'Object Detection':
|
161 |
-
task_prompt = '<OD>'
|
162 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
163 |
-
fig = plot_bbox(image, results['<OD>'])
|
164 |
-
return results, fig_to_pil(fig)
|
165 |
-
elif task_prompt == 'Dense Region Caption':
|
166 |
-
task_prompt = '<DENSE_REGION_CAPTION>'
|
167 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
168 |
-
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
169 |
-
return results, fig_to_pil(fig)
|
170 |
-
elif task_prompt == 'Region Proposal':
|
171 |
-
task_prompt = '<REGION_PROPOSAL>'
|
172 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
173 |
-
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
174 |
-
return results, fig_to_pil(fig)
|
175 |
-
elif task_prompt == 'Caption to Phrase Grounding':
|
176 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
177 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
178 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
179 |
-
return results, fig_to_pil(fig)
|
180 |
-
elif task_prompt == 'Referring Expression Segmentation':
|
181 |
-
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
182 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
183 |
-
output_image = copy.deepcopy(image)
|
184 |
-
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
185 |
-
return results, output_image
|
186 |
-
elif task_prompt == 'Region to Segmentation':
|
187 |
-
task_prompt = '<REGION_TO_SEGMENTATION>'
|
188 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
189 |
-
output_image = copy.deepcopy(image)
|
190 |
-
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
191 |
-
return results, output_image
|
192 |
-
elif task_prompt == 'Open Vocabulary Detection':
|
193 |
-
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
194 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
195 |
-
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
196 |
-
fig = plot_bbox(image, bbox_results)
|
197 |
-
return results, fig_to_pil(fig)
|
198 |
-
elif task_prompt == 'Region to Category':
|
199 |
-
task_prompt = '<REGION_TO_CATEGORY>'
|
200 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
201 |
-
return results, None
|
202 |
-
elif task_prompt == 'Region to Description':
|
203 |
-
task_prompt = '<REGION_TO_DESCRIPTION>'
|
204 |
-
results = run_example(task_prompt, image, text_input, model_id)
|
205 |
-
return results, None
|
206 |
-
elif task_prompt == 'OCR':
|
207 |
-
task_prompt = '<OCR>'
|
208 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
209 |
-
return results, None
|
210 |
-
elif task_prompt == 'OCR with Region':
|
211 |
-
task_prompt = '<OCR_WITH_REGION>'
|
212 |
-
results = run_example(task_prompt, image, model_id=model_id)
|
213 |
-
output_image = copy.deepcopy(image)
|
214 |
-
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
215 |
-
return results, output_image
|
216 |
-
else:
|
217 |
-
return "", None # Return empty string and None for unknown task prompts
|
218 |
-
|
219 |
-
css = """
|
220 |
-
#output {
|
221 |
-
height: 500px;
|
222 |
-
overflow: auto;
|
223 |
-
border: 1px solid #ccc;
|
224 |
-
}
|
225 |
-
"""
|
226 |
-
|
227 |
-
|
228 |
-
single_task_list =[
|
229 |
-
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
230 |
-
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
231 |
-
'Referring Expression Segmentation', 'Region to Segmentation',
|
232 |
-
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
233 |
-
'OCR', 'OCR with Region'
|
234 |
-
]
|
235 |
-
|
236 |
-
cascased_task_list =[
|
237 |
-
'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding'
|
238 |
-
]
|
239 |
-
|
240 |
-
|
241 |
-
def update_task_dropdown(choice):
|
242 |
-
if choice == 'Cascased task':
|
243 |
-
return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding')
|
244 |
-
else:
|
245 |
-
return gr.Dropdown(choices=single_task_list, value='Caption')
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
with gr.Blocks(css=css) as demo:
|
250 |
-
gr.Markdown(DESCRIPTION)
|
251 |
-
with gr.Tab(label="Florence-2 Image to Flux Prompt"):
|
252 |
-
with gr.Row():
|
253 |
-
with gr.Column():
|
254 |
-
input_img = gr.Image(label="Input Picture",height=320)
|
255 |
-
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-base')
|
256 |
-
task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task')
|
257 |
-
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="More Detailed Caption")
|
258 |
-
task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
|
259 |
-
text_input = gr.Textbox(label="Text Input (optional)")
|
260 |
-
submit_btn = gr.Button(value="Submit")
|
261 |
-
with gr.Column():
|
262 |
-
output_text = gr.Textbox(label="Output Text")
|
263 |
-
output_img = gr.Image(label="Output Image")
|
264 |
-
|
265 |
-
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img])
|
266 |
-
|
267 |
demo.launch(debug=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from feifeilib.feifeiflorencebase import process_image
|
3 |
+
|
4 |
+
with gr.Blocks(css=css) as demo:
|
5 |
+
gr.Markdown(DESCRIPTION)
|
6 |
+
with gr.Tab(label="Florence-2 Image to Flux Prompt"):
|
7 |
+
with gr.Row():
|
8 |
+
with gr.Column():
|
9 |
+
input_img = gr.Image(label="Input Picture",hight=320)
|
10 |
+
submit_btn = gr.Button(value="Submit")
|
11 |
+
with gr.Column():
|
12 |
+
output_text = gr.Textbox(label="Output Text")
|
13 |
+
|
14 |
+
submit_btn.click(process_image, [input_img], [output_text])
|
15 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
demo.launch(debug=True)
|
feifeilib/feifeiflorencebase.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
+
import spaces
|
4 |
+
|
5 |
+
import requests
|
6 |
+
import copy
|
7 |
+
|
8 |
+
from PIL import Image, ImageDraw, ImageFont
|
9 |
+
import io
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import matplotlib.patches as patches
|
12 |
+
|
13 |
+
import random
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
import subprocess
|
17 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
18 |
+
|
19 |
+
models = {
|
20 |
+
'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval()
|
21 |
+
}
|
22 |
+
|
23 |
+
processors = {
|
24 |
+
'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
DESCRIPTION = "# [Florence-2 Image to Flux Prompt](https://huggingface.co/microsoft/Florence-2-base)"
|
29 |
+
|
30 |
+
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
31 |
+
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
32 |
+
|
33 |
+
def fig_to_pil(fig):
|
34 |
+
buf = io.BytesIO()
|
35 |
+
fig.savefig(buf, format='png')
|
36 |
+
buf.seek(0)
|
37 |
+
return Image.open(buf)
|
38 |
+
|
39 |
+
@spaces.GPU
|
40 |
+
def run_example(task_prompt = "More Detailed Caption", image, text_input=None, model_id='microsoft/Florence-2-base', progress=gr.Progress(track_tqdm=True)):
|
41 |
+
model = models[model_id]
|
42 |
+
processor = processors[model_id]
|
43 |
+
if text_input is None:
|
44 |
+
prompt = task_prompt
|
45 |
+
else:
|
46 |
+
prompt = task_prompt + text_input
|
47 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
48 |
+
generated_ids = model.generate(
|
49 |
+
input_ids=inputs["input_ids"],
|
50 |
+
pixel_values=inputs["pixel_values"],
|
51 |
+
max_new_tokens=1024,
|
52 |
+
early_stopping=False,
|
53 |
+
do_sample=False,
|
54 |
+
num_beams=3,
|
55 |
+
)
|
56 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
57 |
+
parsed_answer = processor.post_process_generation(
|
58 |
+
generated_text,
|
59 |
+
task=task_prompt,
|
60 |
+
image_size=(image.width, image.height)
|
61 |
+
)
|
62 |
+
return parsed_answer
|
63 |
+
|
64 |
+
def plot_bbox(image, data):
|
65 |
+
fig, ax = plt.subplots()
|
66 |
+
ax.imshow(image)
|
67 |
+
for bbox, label in zip(data['bboxes'], data['labels']):
|
68 |
+
x1, y1, x2, y2 = bbox
|
69 |
+
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
70 |
+
ax.add_patch(rect)
|
71 |
+
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
72 |
+
ax.axis('off')
|
73 |
+
return fig
|
74 |
+
|
75 |
+
def draw_polygons(image, prediction, fill_mask=False):
|
76 |
+
|
77 |
+
draw = ImageDraw.Draw(image)
|
78 |
+
scale = 1
|
79 |
+
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
80 |
+
color = random.choice(colormap)
|
81 |
+
fill_color = random.choice(colormap) if fill_mask else None
|
82 |
+
for _polygon in polygons:
|
83 |
+
_polygon = np.array(_polygon).reshape(-1, 2)
|
84 |
+
if len(_polygon) < 3:
|
85 |
+
print('Invalid polygon:', _polygon)
|
86 |
+
continue
|
87 |
+
_polygon = (_polygon * scale).reshape(-1).tolist()
|
88 |
+
if fill_mask:
|
89 |
+
draw.polygon(_polygon, outline=color, fill=fill_color)
|
90 |
+
else:
|
91 |
+
draw.polygon(_polygon, outline=color)
|
92 |
+
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
93 |
+
return image
|
94 |
+
|
95 |
+
def convert_to_od_format(data):
|
96 |
+
bboxes = data.get('bboxes', [])
|
97 |
+
labels = data.get('bboxes_labels', [])
|
98 |
+
od_results = {
|
99 |
+
'bboxes': bboxes,
|
100 |
+
'labels': labels
|
101 |
+
}
|
102 |
+
return od_results
|
103 |
+
|
104 |
+
def draw_ocr_bboxes(image, prediction):
|
105 |
+
scale = 1
|
106 |
+
draw = ImageDraw.Draw(image)
|
107 |
+
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
108 |
+
for box, label in zip(bboxes, labels):
|
109 |
+
color = random.choice(colormap)
|
110 |
+
new_box = (np.array(box) * scale).tolist()
|
111 |
+
draw.polygon(new_box, width=3, outline=color)
|
112 |
+
draw.text((new_box[0]+8, new_box[1]+2),
|
113 |
+
"{}".format(label),
|
114 |
+
align="right",
|
115 |
+
fill=color)
|
116 |
+
return image
|
117 |
+
|
118 |
+
def process_image(image, task_prompt = "More Detailed Caption", text_input=None, model_id='microsoft/Florence-2-base'):
|
119 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
120 |
+
if task_prompt == 'Caption':
|
121 |
+
task_prompt = '<CAPTION>'
|
122 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
123 |
+
return results, None
|
124 |
+
elif task_prompt == 'Detailed Caption':
|
125 |
+
task_prompt = '<DETAILED_CAPTION>'
|
126 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
127 |
+
return results, None
|
128 |
+
elif task_prompt == 'More Detailed Caption':
|
129 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
130 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
131 |
+
return results, None
|
132 |
+
elif task_prompt == 'Caption + Grounding':
|
133 |
+
task_prompt = '<CAPTION>'
|
134 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
135 |
+
text_input = results[task_prompt]
|
136 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
137 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
138 |
+
results['<CAPTION>'] = text_input
|
139 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
140 |
+
return results, fig_to_pil(fig)
|
141 |
+
elif task_prompt == 'Detailed Caption + Grounding':
|
142 |
+
task_prompt = '<DETAILED_CAPTION>'
|
143 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
144 |
+
text_input = results[task_prompt]
|
145 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
146 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
147 |
+
results['<DETAILED_CAPTION>'] = text_input
|
148 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
149 |
+
return results, fig_to_pil(fig)
|
150 |
+
elif task_prompt == 'More Detailed Caption + Grounding':
|
151 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
152 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
153 |
+
text_input = results[task_prompt]
|
154 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
155 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
156 |
+
results['<MORE_DETAILED_CAPTION>'] = text_input
|
157 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
158 |
+
return results, fig_to_pil(fig)
|
159 |
+
elif task_prompt == 'Object Detection':
|
160 |
+
task_prompt = '<OD>'
|
161 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
162 |
+
fig = plot_bbox(image, results['<OD>'])
|
163 |
+
return results, fig_to_pil(fig)
|
164 |
+
elif task_prompt == 'Dense Region Caption':
|
165 |
+
task_prompt = '<DENSE_REGION_CAPTION>'
|
166 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
167 |
+
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
168 |
+
return results, fig_to_pil(fig)
|
169 |
+
elif task_prompt == 'Region Proposal':
|
170 |
+
task_prompt = '<REGION_PROPOSAL>'
|
171 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
172 |
+
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
173 |
+
return results, fig_to_pil(fig)
|
174 |
+
elif task_prompt == 'Caption to Phrase Grounding':
|
175 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
176 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
177 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
178 |
+
return results, fig_to_pil(fig)
|
179 |
+
elif task_prompt == 'Referring Expression Segmentation':
|
180 |
+
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
181 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
182 |
+
output_image = copy.deepcopy(image)
|
183 |
+
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
184 |
+
return results, output_image
|
185 |
+
elif task_prompt == 'Region to Segmentation':
|
186 |
+
task_prompt = '<REGION_TO_SEGMENTATION>'
|
187 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
188 |
+
output_image = copy.deepcopy(image)
|
189 |
+
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
190 |
+
return results, output_image
|
191 |
+
elif task_prompt == 'Open Vocabulary Detection':
|
192 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
193 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
194 |
+
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
195 |
+
fig = plot_bbox(image, bbox_results)
|
196 |
+
return results, fig_to_pil(fig)
|
197 |
+
elif task_prompt == 'Region to Category':
|
198 |
+
task_prompt = '<REGION_TO_CATEGORY>'
|
199 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
200 |
+
return results, None
|
201 |
+
elif task_prompt == 'Region to Description':
|
202 |
+
task_prompt = '<REGION_TO_DESCRIPTION>'
|
203 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
204 |
+
return results, None
|
205 |
+
elif task_prompt == 'OCR':
|
206 |
+
task_prompt = '<OCR>'
|
207 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
208 |
+
return results, None
|
209 |
+
elif task_prompt == 'OCR with Region':
|
210 |
+
task_prompt = '<OCR_WITH_REGION>'
|
211 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
212 |
+
output_image = copy.deepcopy(image)
|
213 |
+
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
214 |
+
return results, output_image
|
215 |
+
else:
|
216 |
+
return "", None # Return empty string and None for unknown task prompts
|
217 |
+
|
218 |
+
|
219 |
+
single_task_list =[
|
220 |
+
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
221 |
+
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
222 |
+
'Referring Expression Segmentation', 'Region to Segmentation',
|
223 |
+
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
224 |
+
'OCR', 'OCR with Region'
|
225 |
+
]
|
226 |
+
|
227 |
+
cascased_task_list =[
|
228 |
+
'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding'
|
229 |
+
]
|
230 |
+
|
231 |
+
|
232 |
+
def update_task_dropdown(choice):
|
233 |
+
if choice == 'Cascased task':
|
234 |
+
return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding')
|
235 |
+
else:
|
236 |
+
return gr.Dropdown(choices=single_task_list, value='Caption')
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
spaces
|
2 |
transformers
|
3 |
-
timm
|
4 |
-
matplotlib
|
|
|
1 |
spaces
|
2 |
transformers
|
3 |
+
timm
|
|