|
from soni_translate.logging_setup import logger |
|
import torch |
|
import gc |
|
import numpy as np |
|
import os |
|
import shutil |
|
import warnings |
|
import threading |
|
from tqdm import tqdm |
|
from lib.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
from lib.audio import load_audio |
|
import soundfile as sf |
|
import edge_tts |
|
import asyncio |
|
from soni_translate.utils import remove_directory_contents, create_directories |
|
from scipy import signal |
|
from time import time as ttime |
|
import faiss |
|
from vci_pipeline import VC, change_rms, bh, ah |
|
import librosa |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
class Config: |
|
def __init__(self, only_cpu=False): |
|
self.device = "cuda:0" |
|
self.is_half = True |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
( |
|
self.x_pad, |
|
self.x_query, |
|
self.x_center, |
|
self.x_max |
|
) = self.device_config(only_cpu) |
|
|
|
def device_config(self, only_cpu) -> tuple: |
|
if torch.cuda.is_available() and not only_cpu: |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
logger.info( |
|
"16/10 Series GPUs and P40 excel " |
|
"in single-precision tasks." |
|
) |
|
self.is_half = False |
|
else: |
|
self.gpu_name = None |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
elif torch.backends.mps.is_available() and not only_cpu: |
|
logger.info("Supported N-card not found, using MPS for inference") |
|
self.device = "mps" |
|
else: |
|
logger.info("No supported N-card found, using CPU for inference") |
|
self.device = "cpu" |
|
self.is_half = False |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = os.cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem is not None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
logger.info( |
|
f"Config: Device is {self.device}, " |
|
f"half precision is {self.is_half}" |
|
) |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
|
|
BASE_DOWNLOAD_LINK = "https://huggingface.co/r3gm/sonitranslate_voice_models/resolve/main/" |
|
BASE_MODELS = [ |
|
"hubert_base.pt", |
|
"rmvpe.pt" |
|
] |
|
BASE_DIR = "." |
|
|
|
|
|
def load_hu_bert(config): |
|
from fairseq import checkpoint_utils |
|
from soni_translate.utils import download_manager |
|
|
|
for id_model in BASE_MODELS: |
|
download_manager( |
|
os.path.join(BASE_DOWNLOAD_LINK, id_model), BASE_DIR |
|
) |
|
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( |
|
["hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(config.device) |
|
if config.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
|
|
return hubert_model |
|
|
|
|
|
def load_trained_model(model_path, config): |
|
|
|
if not model_path: |
|
raise ValueError("No model found") |
|
|
|
logger.info("Loading %s" % model_path) |
|
cpt = torch.load(model_path, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
if if_f0 == 0: |
|
|
|
pass |
|
|
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
|
|
net_g.load_state_dict(cpt["weight"], strict=False) |
|
net_g.eval().to(config.device) |
|
|
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
|
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
|
|
return n_spk, tgt_sr, net_g, vc, cpt, version |
|
|
|
|
|
class ClassVoices: |
|
def __init__(self, only_cpu=False): |
|
self.model_config = {} |
|
self.config = None |
|
self.only_cpu = only_cpu |
|
|
|
def apply_conf( |
|
self, |
|
tag="base_model", |
|
file_model="", |
|
pitch_algo="pm", |
|
pitch_lvl=0, |
|
file_index="", |
|
index_influence=0.66, |
|
respiration_median_filtering=3, |
|
envelope_ratio=0.25, |
|
consonant_breath_protection=0.33, |
|
resample_sr=0, |
|
file_pitch_algo="", |
|
): |
|
|
|
if not file_model: |
|
raise ValueError("Model not found") |
|
|
|
if file_index is None: |
|
file_index = "" |
|
|
|
if file_pitch_algo is None: |
|
file_pitch_algo = "" |
|
|
|
if not self.config: |
|
self.config = Config(self.only_cpu) |
|
self.hu_bert_model = None |
|
self.model_pitch_estimator = None |
|
|
|
self.model_config[tag] = { |
|
"file_model": file_model, |
|
"pitch_algo": pitch_algo, |
|
"pitch_lvl": pitch_lvl, |
|
"file_index": file_index, |
|
"index_influence": index_influence, |
|
"respiration_median_filtering": respiration_median_filtering, |
|
"envelope_ratio": envelope_ratio, |
|
"consonant_breath_protection": consonant_breath_protection, |
|
"resample_sr": resample_sr, |
|
"file_pitch_algo": file_pitch_algo, |
|
} |
|
return f"CONFIGURATION APPLIED FOR {tag}: {file_model}" |
|
|
|
def infer( |
|
self, |
|
task_id, |
|
params, |
|
|
|
n_spk, |
|
tgt_sr, |
|
net_g, |
|
pipe, |
|
cpt, |
|
version, |
|
if_f0, |
|
|
|
index_rate, |
|
index, |
|
big_npy, |
|
|
|
inp_f0, |
|
|
|
input_audio_path, |
|
overwrite, |
|
): |
|
|
|
f0_method = params["pitch_algo"] |
|
f0_up_key = params["pitch_lvl"] |
|
filter_radius = params["respiration_median_filtering"] |
|
resample_sr = params["resample_sr"] |
|
rms_mix_rate = params["envelope_ratio"] |
|
protect = params["consonant_breath_protection"] |
|
|
|
if not os.path.exists(input_audio_path): |
|
raise ValueError( |
|
"The audio file was not found or is not " |
|
f"a valid file: {input_audio_path}" |
|
) |
|
|
|
f0_up_key = int(f0_up_key) |
|
|
|
audio = load_audio(input_audio_path, 16000) |
|
|
|
|
|
audio_max = np.abs(audio).max() / 0.95 |
|
if audio_max > 1: |
|
audio /= audio_max |
|
|
|
times = [0, 0, 0] |
|
|
|
|
|
|
|
audio = signal.filtfilt(bh, ah, audio) |
|
audio_pad = np.pad( |
|
audio, (pipe.window // 2, pipe.window // 2), mode="reflect" |
|
) |
|
opt_ts = [] |
|
if audio_pad.shape[0] > pipe.t_max: |
|
audio_sum = np.zeros_like(audio) |
|
for i in range(pipe.window): |
|
audio_sum += audio_pad[i:i - pipe.window] |
|
for t in range(pipe.t_center, audio.shape[0], pipe.t_center): |
|
opt_ts.append( |
|
t |
|
- pipe.t_query |
|
+ np.where( |
|
np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query]) |
|
== np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query]).min() |
|
)[0][0] |
|
) |
|
|
|
s = 0 |
|
audio_opt = [] |
|
t = None |
|
t1 = ttime() |
|
|
|
sid_value = 0 |
|
sid = torch.tensor(sid_value, device=pipe.device).unsqueeze(0).long() |
|
|
|
|
|
audio_pad = np.pad(audio, (pipe.t_pad, pipe.t_pad), mode="reflect") |
|
p_len = audio_pad.shape[0] // pipe.window |
|
|
|
|
|
pitch, pitchf = None, None |
|
if if_f0 == 1: |
|
pitch, pitchf = pipe.get_f0( |
|
input_audio_path, |
|
audio_pad, |
|
p_len, |
|
f0_up_key, |
|
f0_method, |
|
filter_radius, |
|
inp_f0, |
|
) |
|
pitch = pitch[:p_len] |
|
pitchf = pitchf[:p_len] |
|
if pipe.device == "mps": |
|
pitchf = pitchf.astype(np.float32) |
|
pitch = torch.tensor( |
|
pitch, device=pipe.device |
|
).unsqueeze(0).long() |
|
pitchf = torch.tensor( |
|
pitchf, device=pipe.device |
|
).unsqueeze(0).float() |
|
|
|
t2 = ttime() |
|
times[1] += t2 - t1 |
|
for t in opt_ts: |
|
t = t // pipe.window * pipe.window |
|
if if_f0 == 1: |
|
pitch_slice = pitch[ |
|
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window |
|
] |
|
pitchf_slice = pitchf[ |
|
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window |
|
] |
|
else: |
|
pitch_slice = None |
|
pitchf_slice = None |
|
|
|
audio_slice = audio_pad[s:t + pipe.t_pad2 + pipe.window] |
|
audio_opt.append( |
|
pipe.vc( |
|
self.hu_bert_model, |
|
net_g, |
|
sid, |
|
audio_slice, |
|
pitch_slice, |
|
pitchf_slice, |
|
times, |
|
index, |
|
big_npy, |
|
index_rate, |
|
version, |
|
protect, |
|
)[pipe.t_pad_tgt:-pipe.t_pad_tgt] |
|
) |
|
s = t |
|
|
|
pitch_end_slice = pitch[ |
|
:, t // pipe.window: |
|
] if t is not None else pitch |
|
pitchf_end_slice = pitchf[ |
|
:, t // pipe.window: |
|
] if t is not None else pitchf |
|
|
|
audio_opt.append( |
|
pipe.vc( |
|
self.hu_bert_model, |
|
net_g, |
|
sid, |
|
audio_pad[t:], |
|
pitch_end_slice, |
|
pitchf_end_slice, |
|
times, |
|
index, |
|
big_npy, |
|
index_rate, |
|
version, |
|
protect, |
|
)[pipe.t_pad_tgt:-pipe.t_pad_tgt] |
|
) |
|
|
|
audio_opt = np.concatenate(audio_opt) |
|
if rms_mix_rate != 1: |
|
audio_opt = change_rms( |
|
audio, 16000, audio_opt, tgt_sr, rms_mix_rate |
|
) |
|
if resample_sr >= 16000 and tgt_sr != resample_sr: |
|
audio_opt = librosa.resample( |
|
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr |
|
) |
|
audio_max = np.abs(audio_opt).max() / 0.99 |
|
max_int16 = 32768 |
|
if audio_max > 1: |
|
max_int16 /= audio_max |
|
audio_opt = (audio_opt * max_int16).astype(np.int16) |
|
del pitch, pitchf, sid |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
if tgt_sr != resample_sr >= 16000: |
|
final_sr = resample_sr |
|
else: |
|
final_sr = tgt_sr |
|
|
|
""" |
|
"Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( |
|
times[0], |
|
times[1], |
|
times[2], |
|
), (final_sr, audio_opt) |
|
|
|
""" |
|
|
|
if overwrite: |
|
output_audio_path = input_audio_path |
|
else: |
|
basename = os.path.basename(input_audio_path) |
|
dirname = os.path.dirname(input_audio_path) |
|
|
|
new_basename = basename.split( |
|
'.')[0] + "_edited." + basename.split('.')[-1] |
|
new_path = os.path.join(dirname, new_basename) |
|
logger.info(str(new_path)) |
|
|
|
output_audio_path = new_path |
|
|
|
|
|
sf.write( |
|
file=output_audio_path, |
|
samplerate=final_sr, |
|
data=audio_opt |
|
) |
|
|
|
self.model_config[task_id]["result"].append(output_audio_path) |
|
self.output_list.append(output_audio_path) |
|
|
|
def make_test( |
|
self, |
|
tts_text, |
|
tts_voice, |
|
model_path, |
|
index_path, |
|
transpose, |
|
f0_method, |
|
): |
|
|
|
folder_test = "test" |
|
tag = "test_edge" |
|
tts_file = "test/test.wav" |
|
tts_edited = "test/test_edited.wav" |
|
|
|
create_directories(folder_test) |
|
remove_directory_contents(folder_test) |
|
|
|
if "SET_LIMIT" == os.getenv("DEMO"): |
|
if len(tts_text) > 60: |
|
tts_text = tts_text[:60] |
|
logger.warning("DEMO; limit to 60 characters") |
|
|
|
try: |
|
asyncio.run(edge_tts.Communicate( |
|
tts_text, "-".join(tts_voice.split('-')[:-1]) |
|
).save(tts_file)) |
|
except Exception as e: |
|
raise ValueError( |
|
"No audio was received. Please change the " |
|
f"tts voice for {tts_voice}. Error: {str(e)}" |
|
) |
|
|
|
shutil.copy(tts_file, tts_edited) |
|
|
|
self.apply_conf( |
|
tag=tag, |
|
file_model=model_path, |
|
pitch_algo=f0_method, |
|
pitch_lvl=transpose, |
|
file_index=index_path, |
|
index_influence=0.66, |
|
respiration_median_filtering=3, |
|
envelope_ratio=0.25, |
|
consonant_breath_protection=0.33, |
|
) |
|
|
|
self( |
|
audio_files=tts_edited, |
|
tag_list=tag, |
|
overwrite=True |
|
) |
|
|
|
return tts_edited, tts_file |
|
|
|
def run_threads(self, threads): |
|
|
|
for thread in threads: |
|
thread.start() |
|
|
|
|
|
for thread in threads: |
|
thread.join() |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def unload_models(self): |
|
self.hu_bert_model = None |
|
self.model_pitch_estimator = None |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def __call__( |
|
self, |
|
audio_files=[], |
|
tag_list=[], |
|
overwrite=False, |
|
parallel_workers=1, |
|
): |
|
logger.info(f"Parallel workers: {str(parallel_workers)}") |
|
|
|
self.output_list = [] |
|
|
|
if not self.model_config: |
|
raise ValueError("No model has been configured for inference") |
|
|
|
if isinstance(audio_files, str): |
|
audio_files = [audio_files] |
|
if isinstance(tag_list, str): |
|
tag_list = [tag_list] |
|
|
|
if not audio_files: |
|
raise ValueError("No audio found to convert") |
|
if not tag_list: |
|
tag_list = [list(self.model_config.keys())[-1]] * len(audio_files) |
|
|
|
if len(audio_files) > len(tag_list): |
|
logger.info("Extend tag list to match audio files") |
|
extend_number = len(audio_files) - len(tag_list) |
|
tag_list.extend([tag_list[0]] * extend_number) |
|
|
|
if len(audio_files) < len(tag_list): |
|
logger.info("Cut list tags") |
|
tag_list = tag_list[:len(audio_files)] |
|
|
|
tag_file_pairs = list(zip(tag_list, audio_files)) |
|
sorted_tag_file = sorted(tag_file_pairs, key=lambda x: x[0]) |
|
|
|
|
|
if not self.hu_bert_model: |
|
self.hu_bert_model = load_hu_bert(self.config) |
|
|
|
cache_params = None |
|
threads = [] |
|
progress_bar = tqdm(total=len(tag_list), desc="Progress") |
|
for i, (id_tag, input_audio_path) in enumerate(sorted_tag_file): |
|
|
|
if id_tag not in self.model_config.keys(): |
|
logger.info( |
|
f"No configured model for {id_tag} with {input_audio_path}" |
|
) |
|
continue |
|
|
|
if ( |
|
len(threads) >= parallel_workers |
|
or cache_params != id_tag |
|
and cache_params is not None |
|
): |
|
|
|
self.run_threads(threads) |
|
progress_bar.update(len(threads)) |
|
|
|
threads = [] |
|
|
|
if cache_params != id_tag: |
|
|
|
self.model_config[id_tag]["result"] = [] |
|
|
|
|
|
( |
|
n_spk, |
|
tgt_sr, |
|
net_g, |
|
pipe, |
|
cpt, |
|
version, |
|
if_f0, |
|
index_rate, |
|
index, |
|
big_npy, |
|
inp_f0, |
|
) = [None] * 11 |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
params = self.model_config[id_tag] |
|
|
|
model_path = params["file_model"] |
|
f0_method = params["pitch_algo"] |
|
file_index = params["file_index"] |
|
index_rate = params["index_influence"] |
|
f0_file = params["file_pitch_algo"] |
|
|
|
|
|
( |
|
n_spk, |
|
tgt_sr, |
|
net_g, |
|
pipe, |
|
cpt, |
|
version |
|
) = load_trained_model(model_path, self.config) |
|
if_f0 = cpt.get("f0", 1) |
|
|
|
|
|
if os.path.exists(file_index) and index_rate != 0: |
|
try: |
|
index = faiss.read_index(file_index) |
|
big_npy = index.reconstruct_n(0, index.ntotal) |
|
except Exception as error: |
|
logger.error(f"Index: {str(error)}") |
|
index_rate = 0 |
|
index = big_npy = None |
|
else: |
|
logger.warning("File index not found") |
|
index_rate = 0 |
|
index = big_npy = None |
|
|
|
|
|
inp_f0 = None |
|
if os.path.exists(f0_file): |
|
try: |
|
with open(f0_file, "r") as f: |
|
lines = f.read().strip("\n").split("\n") |
|
inp_f0 = [] |
|
for line in lines: |
|
inp_f0.append([float(i) for i in line.split(",")]) |
|
inp_f0 = np.array(inp_f0, dtype="float32") |
|
except Exception as error: |
|
logger.error(f"f0 file: {str(error)}") |
|
|
|
if "rmvpe" in f0_method: |
|
if not self.model_pitch_estimator: |
|
from lib.rmvpe import RMVPE |
|
|
|
logger.info("Loading vocal pitch estimator model") |
|
self.model_pitch_estimator = RMVPE( |
|
"rmvpe.pt", |
|
is_half=self.config.is_half, |
|
device=self.config.device |
|
) |
|
|
|
pipe.model_rmvpe = self.model_pitch_estimator |
|
|
|
cache_params = id_tag |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
thread = threading.Thread( |
|
target=self.infer, |
|
args=( |
|
id_tag, |
|
params, |
|
|
|
n_spk, |
|
tgt_sr, |
|
net_g, |
|
pipe, |
|
cpt, |
|
version, |
|
if_f0, |
|
|
|
index_rate, |
|
index, |
|
big_npy, |
|
|
|
inp_f0, |
|
|
|
input_audio_path, |
|
overwrite, |
|
) |
|
) |
|
|
|
threads.append(thread) |
|
|
|
|
|
if threads: |
|
self.run_threads(threads) |
|
|
|
progress_bar.update(len(threads)) |
|
progress_bar.close() |
|
|
|
final_result = [] |
|
valid_tags = set(tag_list) |
|
for tag in valid_tags: |
|
if ( |
|
tag in self.model_config.keys() |
|
and "result" in self.model_config[tag].keys() |
|
): |
|
final_result.extend(self.model_config[tag]["result"]) |
|
|
|
return final_result |
|
|