Spaces:
Runtime error
Runtime error
Alex
commited on
Commit
·
d311f5c
1
Parent(s):
5a9eb5a
added comments
Browse files- milestone3.ipynb +87 -101
milestone3.ipynb
CHANGED
@@ -1,18 +1,4 @@
|
|
1 |
{
|
2 |
-
"nbformat": 4,
|
3 |
-
"nbformat_minor": 0,
|
4 |
-
"metadata": {
|
5 |
-
"colab": {
|
6 |
-
"provenance": []
|
7 |
-
},
|
8 |
-
"kernelspec": {
|
9 |
-
"name": "python3",
|
10 |
-
"display_name": "Python 3"
|
11 |
-
},
|
12 |
-
"language_info": {
|
13 |
-
"name": "python"
|
14 |
-
}
|
15 |
-
},
|
16 |
"cells": [
|
17 |
{
|
18 |
"cell_type": "code",
|
@@ -26,8 +12,8 @@
|
|
26 |
},
|
27 |
"outputs": [
|
28 |
{
|
29 |
-
"output_type": "stream",
|
30 |
"name": "stdout",
|
|
|
31 |
"text": [
|
32 |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
33 |
"Collecting datasets\n",
|
@@ -110,12 +96,13 @@
|
|
110 |
}
|
111 |
],
|
112 |
"source": [
|
|
|
113 |
"!pip install datasets\n",
|
114 |
"!pip install transformers\n",
|
115 |
"import pandas as pd\n",
|
116 |
"from sklearn.model_selection import train_test_split\n",
|
117 |
"import numpy as np\n",
|
118 |
-
"import transformers\n",
|
119 |
"import torch\n",
|
120 |
"import csv\n",
|
121 |
"from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler\n",
|
@@ -124,17 +111,7 @@
|
|
124 |
},
|
125 |
{
|
126 |
"cell_type": "code",
|
127 |
-
"
|
128 |
-
"filename = \"/content/sample_data/train.csv\"\n",
|
129 |
-
"df = pd.read_csv(filename)\n",
|
130 |
-
"df.head()\n",
|
131 |
-
"df.drop(['id'], inplace=True, axis=1)\n",
|
132 |
-
"newdf = pd.DataFrame()\n",
|
133 |
-
"newdf['text'] = df['comment_text']\n",
|
134 |
-
"newdf['labels'] = df.iloc[:, 1:].values.tolist()\n",
|
135 |
-
"\n",
|
136 |
-
"newdf.head()"
|
137 |
-
],
|
138 |
"metadata": {
|
139 |
"colab": {
|
140 |
"base_uri": "https://localhost:8080/",
|
@@ -143,12 +120,11 @@
|
|
143 |
"id": "XQEDvn-7ksXU",
|
144 |
"outputId": "960bd74f-2533-4eab-9800-643823e14f2f"
|
145 |
},
|
146 |
-
"execution_count": null,
|
147 |
"outputs": [
|
148 |
{
|
149 |
-
"output_type": "error",
|
150 |
"ename": "FileNotFoundError",
|
151 |
"evalue": "ignored",
|
|
|
152 |
"traceback": [
|
153 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
154 |
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
@@ -163,32 +139,22 @@
|
|
163 |
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/content/sample_data/train.csv'"
|
164 |
]
|
165 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
]
|
167 |
},
|
168 |
{
|
169 |
"cell_type": "code",
|
170 |
-
"
|
171 |
-
"epoch = 1\n",
|
172 |
-
"max_len = 128\n",
|
173 |
-
"batch_size = 5\n",
|
174 |
-
"\n",
|
175 |
-
"train_df, val_df = train_test_split(newdf, test_size=0.2, random_state=42)\n",
|
176 |
-
"\"\"\"\n",
|
177 |
-
"DistilBertTokenizer\n",
|
178 |
-
"torch.utils.data.Dataset\n",
|
179 |
-
"inputs = self.tokenizer.encode_plus\n",
|
180 |
-
"DataLoader\n",
|
181 |
-
"PreTrainedModel\n",
|
182 |
-
"DistilBertForSequenceClassification\n",
|
183 |
-
"DistilBertConfig\n",
|
184 |
-
"model = DistilBertClassifier2(config)\n",
|
185 |
-
"model.to(device)\n",
|
186 |
-
"torch.optim.Adam\n",
|
187 |
-
"tokenizer.encode_plus\n",
|
188 |
-
"tokenizer.save_pretrained(\"model\")\n",
|
189 |
-
"model.save_pretrained(\"model\")\n",
|
190 |
-
"\"\"\""
|
191 |
-
],
|
192 |
"metadata": {
|
193 |
"colab": {
|
194 |
"base_uri": "https://localhost:8080/",
|
@@ -197,12 +163,11 @@
|
|
197 |
"id": "DO8fKxgnwIPz",
|
198 |
"outputId": "d0f73814-62a0-4d74-9353-3d4ce90b6d1b"
|
199 |
},
|
200 |
-
"execution_count": null,
|
201 |
"outputs": [
|
202 |
{
|
203 |
-
"output_type": "error",
|
204 |
"ename": "NameError",
|
205 |
"evalue": "ignored",
|
|
|
206 |
"traceback": [
|
207 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
208 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
@@ -210,17 +175,29 @@
|
|
210 |
"\u001b[0;31mNameError\u001b[0m: name 'newdf' is not defined"
|
211 |
]
|
212 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
]
|
214 |
},
|
215 |
{
|
216 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
217 |
"source": [
|
218 |
-
"class DS(Dataset)
|
219 |
" def __init__(self, dataframe, max_len):\n",
|
220 |
-
" self.data = dataframe\n",
|
221 |
" self.max_len = max_len\n",
|
222 |
-
" self.text = dataframe.text
|
223 |
-
" self.targets = self.data.labels\n",
|
224 |
" self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n",
|
225 |
" \n",
|
226 |
" def __len__(self):\n",
|
@@ -230,7 +207,7 @@
|
|
230 |
" text = str(self.text.iloc[index])\n",
|
231 |
" text = \" \".join(text.split())\n",
|
232 |
"\n",
|
233 |
-
" inputs = self.tokenizer.encode_plus(\n",
|
234 |
" text, None,\n",
|
235 |
" add_special_tokens=True,\n",
|
236 |
" max_length=self.max_len,\n",
|
@@ -239,41 +216,30 @@
|
|
239 |
" ids = inputs['input_ids']\n",
|
240 |
" mask = inputs['attention_mask']\n",
|
241 |
" token_type_ids = inputs[\"token_type_ids\"]\n",
|
242 |
-
" return {\n",
|
243 |
" 'ids': torch.tensor(ids, dtype=torch.long),\n",
|
244 |
" 'attention_mask': torch.tensor(mask, dtype=torch.long),\n",
|
245 |
" 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),\n",
|
246 |
" 'labels': torch.tensor(self.targets.iloc[index], dtype=torch.float)\n",
|
247 |
" }\n"
|
248 |
-
]
|
249 |
-
"metadata": {
|
250 |
-
"id": "i80qLafpzWDh"
|
251 |
-
},
|
252 |
-
"execution_count": null,
|
253 |
-
"outputs": []
|
254 |
},
|
255 |
{
|
256 |
"cell_type": "code",
|
257 |
-
"
|
258 |
-
"traindata = DS(train_df, max_len)\n",
|
259 |
-
"validdata = DS(val_df, max_len)\n",
|
260 |
-
"train_loader = DataLoader(traindata, batch_size=batch_size, shuffle=True)\n",
|
261 |
-
"tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n"
|
262 |
-
],
|
263 |
"metadata": {
|
264 |
-
"id": "EMScGH58Poaw",
|
265 |
"colab": {
|
266 |
"base_uri": "https://localhost:8080/",
|
267 |
"height": 201
|
268 |
},
|
|
|
269 |
"outputId": "de081257-fb6c-4c73-c54d-e88dd1e2603f"
|
270 |
},
|
271 |
-
"execution_count": null,
|
272 |
"outputs": [
|
273 |
{
|
274 |
-
"output_type": "error",
|
275 |
"ename": "NameError",
|
276 |
"evalue": "ignored",
|
|
|
277 |
"traceback": [
|
278 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
279 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
@@ -281,33 +247,30 @@
|
|
281 |
"\u001b[0;31mNameError\u001b[0m: name 'train_df' is not defined"
|
282 |
]
|
283 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
]
|
285 |
},
|
286 |
{
|
287 |
"cell_type": "code",
|
|
|
288 |
"metadata": {
|
289 |
-
"id": "fb9-Yr9YDZqo",
|
290 |
"colab": {
|
291 |
"base_uri": "https://localhost:8080/",
|
292 |
"height": 235
|
293 |
},
|
|
|
294 |
"outputId": "0664e5d0-55cb-4b58-e75a-b9acdab82e73"
|
295 |
},
|
296 |
-
"source": [
|
297 |
-
"device = torch.device('cuda')\n",
|
298 |
-
"\n",
|
299 |
-
"model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=6, problem_type=\"multi_label_classification\")\n",
|
300 |
-
"model.to(device)\n",
|
301 |
-
"model.train()\n",
|
302 |
-
"\n",
|
303 |
-
"optimizer = AdamW(model.parameters(), lr=5e-5)\n"
|
304 |
-
],
|
305 |
-
"execution_count": null,
|
306 |
"outputs": [
|
307 |
{
|
308 |
-
"output_type": "error",
|
309 |
"ename": "NameError",
|
310 |
"evalue": "ignored",
|
|
|
311 |
"traceback": [
|
312 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
313 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
@@ -315,10 +278,24 @@
|
|
315 |
"\u001b[0;31mNameError\u001b[0m: name 'torch' is not defined"
|
316 |
]
|
317 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
]
|
319 |
},
|
320 |
{
|
321 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
322 |
"source": [
|
323 |
"for i in range(epoch):\n",
|
324 |
" for batch in train_loader:\n",
|
@@ -333,15 +310,15 @@
|
|
333 |
" loss.backward()\n",
|
334 |
" optimizer.step()\n",
|
335 |
"model.eval()\n"
|
336 |
-
]
|
337 |
-
"metadata": {
|
338 |
-
"id": "mtMhE5_z8kw8"
|
339 |
-
},
|
340 |
-
"execution_count": null,
|
341 |
-
"outputs": []
|
342 |
},
|
343 |
{
|
344 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
345 |
"source": [
|
346 |
"xtrain = [\"FUCK YOUR FILTHY MOTHER IN THE ASS, DRY!\"]\n",
|
347 |
"batch = tokenizer(xtrain, truncation=True, padding='max_length', return_tensors=\"pt\").to(device)\n",
|
@@ -351,14 +328,23 @@
|
|
351 |
" results = torch.sigmoid(outputs.logits)*100\n",
|
352 |
" print(results)\n",
|
353 |
"\n",
|
354 |
-
"model.save_pretrained(\"pretrained_model\")\n",
|
355 |
"tokenizer.save_pretrained(\"model_tokenizer\")"
|
356 |
-
]
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
}
|
363 |
-
|
364 |
-
|
|
|
|
|
|
1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
|
|
12 |
},
|
13 |
"outputs": [
|
14 |
{
|
|
|
15 |
"name": "stdout",
|
16 |
+
"output_type": "stream",
|
17 |
"text": [
|
18 |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
19 |
"Collecting datasets\n",
|
|
|
96 |
}
|
97 |
],
|
98 |
"source": [
|
99 |
+
"#list of import statements\n",
|
100 |
"!pip install datasets\n",
|
101 |
"!pip install transformers\n",
|
102 |
"import pandas as pd\n",
|
103 |
"from sklearn.model_selection import train_test_split\n",
|
104 |
"import numpy as np\n",
|
105 |
+
"import transformers \n",
|
106 |
"import torch\n",
|
107 |
"import csv\n",
|
108 |
"from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler\n",
|
|
|
111 |
},
|
112 |
{
|
113 |
"cell_type": "code",
|
114 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
"metadata": {
|
116 |
"colab": {
|
117 |
"base_uri": "https://localhost:8080/",
|
|
|
120 |
"id": "XQEDvn-7ksXU",
|
121 |
"outputId": "960bd74f-2533-4eab-9800-643823e14f2f"
|
122 |
},
|
|
|
123 |
"outputs": [
|
124 |
{
|
|
|
125 |
"ename": "FileNotFoundError",
|
126 |
"evalue": "ignored",
|
127 |
+
"output_type": "error",
|
128 |
"traceback": [
|
129 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
130 |
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
|
|
139 |
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/content/sample_data/train.csv'"
|
140 |
]
|
141 |
}
|
142 |
+
],
|
143 |
+
"source": [
|
144 |
+
"filename = \"/content/sample_data/train.csv\" #takes in the file for training and inputs into a pandas DataFrame\n",
|
145 |
+
"df = pd.read_csv(filename)\n",
|
146 |
+
"df.head()\n",
|
147 |
+
"df.drop(['id'], inplace=True, axis=1)\n",
|
148 |
+
"newdf = pd.DataFrame()\n",
|
149 |
+
"newdf['text'] = df['comment_text']\n",
|
150 |
+
"newdf['labels'] = df.iloc[:, 1:].values.tolist()\n",
|
151 |
+
"\n",
|
152 |
+
"newdf.head()"
|
153 |
]
|
154 |
},
|
155 |
{
|
156 |
"cell_type": "code",
|
157 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
"metadata": {
|
159 |
"colab": {
|
160 |
"base_uri": "https://localhost:8080/",
|
|
|
163 |
"id": "DO8fKxgnwIPz",
|
164 |
"outputId": "d0f73814-62a0-4d74-9353-3d4ce90b6d1b"
|
165 |
},
|
|
|
166 |
"outputs": [
|
167 |
{
|
|
|
168 |
"ename": "NameError",
|
169 |
"evalue": "ignored",
|
170 |
+
"output_type": "error",
|
171 |
"traceback": [
|
172 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
173 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
|
175 |
"\u001b[0;31mNameError\u001b[0m: name 'newdf' is not defined"
|
176 |
]
|
177 |
}
|
178 |
+
],
|
179 |
+
"source": [
|
180 |
+
"epoch = 1\n",
|
181 |
+
"max_len = 128\n",
|
182 |
+
"batch_size = 5\n",
|
183 |
+
"\n",
|
184 |
+
"train_df, val_df = train_test_split(newdf, test_size=0.2, random_state=42) #splits the dataframe into training data and valid data\n"
|
185 |
]
|
186 |
},
|
187 |
{
|
188 |
"cell_type": "code",
|
189 |
+
"execution_count": null,
|
190 |
+
"metadata": {
|
191 |
+
"id": "i80qLafpzWDh"
|
192 |
+
},
|
193 |
+
"outputs": [],
|
194 |
"source": [
|
195 |
+
"class DS(Dataset): #this creates the dataset class\n",
|
196 |
" def __init__(self, dataframe, max_len):\n",
|
197 |
+
" self.data = dataframe #takes in the dataframe from earlier\n",
|
198 |
" self.max_len = max_len\n",
|
199 |
+
" self.text = dataframe.text #\n",
|
200 |
+
" self.targets = self.data.labels \n",
|
201 |
" self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n",
|
202 |
" \n",
|
203 |
" def __len__(self):\n",
|
|
|
207 |
" text = str(self.text.iloc[index])\n",
|
208 |
" text = \" \".join(text.split())\n",
|
209 |
"\n",
|
210 |
+
" inputs = self.tokenizer.encode_plus( #this is for the tokens\n",
|
211 |
" text, None,\n",
|
212 |
" add_special_tokens=True,\n",
|
213 |
" max_length=self.max_len,\n",
|
|
|
216 |
" ids = inputs['input_ids']\n",
|
217 |
" mask = inputs['attention_mask']\n",
|
218 |
" token_type_ids = inputs[\"token_type_ids\"]\n",
|
219 |
+
" return { #this is the output for the class (this outputs tensors as it is a more usable form)\n",
|
220 |
" 'ids': torch.tensor(ids, dtype=torch.long),\n",
|
221 |
" 'attention_mask': torch.tensor(mask, dtype=torch.long),\n",
|
222 |
" 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),\n",
|
223 |
" 'labels': torch.tensor(self.targets.iloc[index], dtype=torch.float)\n",
|
224 |
" }\n"
|
225 |
+
]
|
|
|
|
|
|
|
|
|
|
|
226 |
},
|
227 |
{
|
228 |
"cell_type": "code",
|
229 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
230 |
"metadata": {
|
|
|
231 |
"colab": {
|
232 |
"base_uri": "https://localhost:8080/",
|
233 |
"height": 201
|
234 |
},
|
235 |
+
"id": "EMScGH58Poaw",
|
236 |
"outputId": "de081257-fb6c-4c73-c54d-e88dd1e2603f"
|
237 |
},
|
|
|
238 |
"outputs": [
|
239 |
{
|
|
|
240 |
"ename": "NameError",
|
241 |
"evalue": "ignored",
|
242 |
+
"output_type": "error",
|
243 |
"traceback": [
|
244 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
245 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
|
247 |
"\u001b[0;31mNameError\u001b[0m: name 'train_df' is not defined"
|
248 |
]
|
249 |
}
|
250 |
+
],
|
251 |
+
"source": [
|
252 |
+
"traindata = DS(train_df, max_len) #creates training dataset\n",
|
253 |
+
"validdata = DS(val_df, max_len) #creates valid dataset\n",
|
254 |
+
"train_loader = DataLoader(traindata, batch_size=batch_size, shuffle=True) #loads the dataset into dataloader\n",
|
255 |
+
"tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n"
|
256 |
]
|
257 |
},
|
258 |
{
|
259 |
"cell_type": "code",
|
260 |
+
"execution_count": null,
|
261 |
"metadata": {
|
|
|
262 |
"colab": {
|
263 |
"base_uri": "https://localhost:8080/",
|
264 |
"height": 235
|
265 |
},
|
266 |
+
"id": "fb9-Yr9YDZqo",
|
267 |
"outputId": "0664e5d0-55cb-4b58-e75a-b9acdab82e73"
|
268 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
"outputs": [
|
270 |
{
|
|
|
271 |
"ename": "NameError",
|
272 |
"evalue": "ignored",
|
273 |
+
"output_type": "error",
|
274 |
"traceback": [
|
275 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
276 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
|
278 |
"\u001b[0;31mNameError\u001b[0m: name 'torch' is not defined"
|
279 |
]
|
280 |
}
|
281 |
+
],
|
282 |
+
"source": [
|
283 |
+
"device = torch.device('cuda')\n",
|
284 |
+
"\n",
|
285 |
+
"model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=6, problem_type=\"multi_label_classification\")\n",
|
286 |
+
"model.to(device)\n",
|
287 |
+
"model.train() #trains the data\n",
|
288 |
+
"\n",
|
289 |
+
"optimizer = AdamW(model.parameters(), lr=5e-5)\n"
|
290 |
]
|
291 |
},
|
292 |
{
|
293 |
"cell_type": "code",
|
294 |
+
"execution_count": null,
|
295 |
+
"metadata": {
|
296 |
+
"id": "mtMhE5_z8kw8"
|
297 |
+
},
|
298 |
+
"outputs": [],
|
299 |
"source": [
|
300 |
"for i in range(epoch):\n",
|
301 |
" for batch in train_loader:\n",
|
|
|
310 |
" loss.backward()\n",
|
311 |
" optimizer.step()\n",
|
312 |
"model.eval()\n"
|
313 |
+
]
|
|
|
|
|
|
|
|
|
|
|
314 |
},
|
315 |
{
|
316 |
"cell_type": "code",
|
317 |
+
"execution_count": null,
|
318 |
+
"metadata": {
|
319 |
+
"id": "8T4UG8K8BvUn"
|
320 |
+
},
|
321 |
+
"outputs": [],
|
322 |
"source": [
|
323 |
"xtrain = [\"FUCK YOUR FILTHY MOTHER IN THE ASS, DRY!\"]\n",
|
324 |
"batch = tokenizer(xtrain, truncation=True, padding='max_length', return_tensors=\"pt\").to(device)\n",
|
|
|
328 |
" results = torch.sigmoid(outputs.logits)*100\n",
|
329 |
" print(results)\n",
|
330 |
"\n",
|
331 |
+
"model.save_pretrained(\"pretrained_model\") #saves the trained model\n",
|
332 |
"tokenizer.save_pretrained(\"model_tokenizer\")"
|
333 |
+
]
|
334 |
+
}
|
335 |
+
],
|
336 |
+
"metadata": {
|
337 |
+
"colab": {
|
338 |
+
"provenance": []
|
339 |
+
},
|
340 |
+
"kernelspec": {
|
341 |
+
"display_name": "Python 3",
|
342 |
+
"name": "python3"
|
343 |
+
},
|
344 |
+
"language_info": {
|
345 |
+
"name": "python"
|
346 |
}
|
347 |
+
},
|
348 |
+
"nbformat": 4,
|
349 |
+
"nbformat_minor": 0
|
350 |
+
}
|