Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,571 Bytes
518d5a1 c4a4f41 518d5a1 a111da9 518d5a1 c539588 c4a4f41 c539588 518d5a1 53524c7 518d5a1 53524c7 518d5a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Reference: https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell/blob/main/app.py
import spaces
import gradio as gr
import numpy as np
import random
import torch
import os
from diffusers import Transformer2DModel, PixArtSigmaPipeline, AutoencoderKL, DPMSolverMultistepScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverSDEScheduler
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, QuantoConfig, EetqConfig
device = "cuda"
weight_dtype = torch.bfloat16
weight_dtype_te = torch.bfloat16
MAX_SEED = np.iinfo(np.int32).max
transformer = Transformer2DModel.from_pretrained(
"alfredplpl/commonart-tmp-3",
torch_dtype=weight_dtype,
token=os.environ["TOKEN"]
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=weight_dtype)
scheduler=DPMSolverMultistepScheduler()
pipe = PixArtSigmaPipeline(
vae=vae,
tokenizer=None,
text_encoder=None,
transformer=transformer,
scheduler=scheduler
)
pipe.to(device)
tokenizer = AutoTokenizer.from_pretrained("cyberagent/calm2-7b")
text_encoder = AutoModelForCausalLM.from_pretrained(
"cyberagent/calm2-7b",
torch_dtype=weight_dtype_te,
device_map=device
)
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=512, height=512, num_inference_steps=20, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
with torch.no_grad():
pos_ids = tokenizer(
prompt, max_length=512, padding="max_length", truncation=True, return_tensors="pt",
).to(device)
pos_emb = text_encoder(pos_ids.input_ids, output_hidden_states=True, attention_mask=pos_ids.attention_mask)
pos_emb = pos_emb.hidden_states[-1]
neg_ids = tokenizer(
"", max_length=512, padding="max_length", truncation=True, return_tensors="pt",
).to(device)
neg_emb = text_encoder(neg_ids.input_ids, output_hidden_states=True, attention_mask=neg_ids.attention_mask)
neg_emb = neg_emb.hidden_states[-1]
image = pipe(
negative_prompt=None,
prompt_embeds=pos_emb,
negative_prompt_embeds=neg_emb,
prompt_attention_mask=pos_ids.attention_mask,
negative_prompt_attention_mask=neg_ids.attention_mask,
max_sequence_length=512,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=4.5).images[0]
return image, seed
examples = [
"芝生の上にあるピザ",
"東京の桜と建物。満開の桜の木が並び、ピンク色の花びらが風に舞っている。桜の背景には東京の高層ビルや伝統的な建物が調和して立っている。春の陽光が全体を明るく照らし、桜と建物が美しく映えている。都市の活気と自然の美しさが融合した風景。",
"silverでできている男性の顔写真。背景は黒い。silverはキラキラしている。",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# CommonArt β
商用利用できる透明性の高い日本語画像生成AI [モデル](https://huggingface.co/aipicasso/commonart-beta) [ブログ](https://note.com/aipicasso/n/nf17f876839b2)
""")
with gr.Row():
prompt = gr.Text(
label="テキスト",
show_label=False,
max_lines=1,
placeholder="生成したいものを日本語や英語で説明してください",
container=False,
)
run_button = gr.Button("生成", scale=0)
result = gr.Image(label="生成結果", show_label=False)
with gr.Accordion("詳細設定", open=False):
seed = gr.Slider(
label="シード値",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="ランダム", value=True)
with gr.Row():
width = gr.Slider(
label="幅",
minimum=256,
maximum=768,
step=64,
value=512,
)
height = gr.Slider(
label="高さ",
minimum=256,
maximum=768,
step=64,
value=512,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="推論回数",
minimum=1,
maximum=50,
step=1,
value=20,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |