Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,470 Bytes
bce439c 7f98410 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 c86d77c 7f98410 f3cae17 7f98410 0e14842 bce439c 0da220b 0e14842 bce439c 0e14842 f3cae17 7f98410 f3cae17 7f98410 0e14842 f3cae17 bce439c 0e14842 fda85af bce439c fda85af bce439c 7f98410 c86d77c 7f98410 0e14842 3c391b6 0e14842 bce439c bf65a8f 0e14842 c86d77c 66d5f35 9d997d8 7f98410 0e14842 bce439c 7f98410 c86d77c 7f98410 c86d77c a2bd23b c86d77c fda85af 7f98410 c86d77c 7f98410 bce439c c86d77c 0e14842 bce439c fda85af bce439c 7f98410 ba0cd8f 0e14842 fda85af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/claude-monet"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# Load all images from the directory
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# Sort by creation time (newest first)
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
def load_predefined_images():
predefined_images = [
"assets/cm1.webp",
"assets/cm2.webp",
"assets/cm3.webp",
"assets/cm4.webp",
"assets/cm5.webp",
"assets/cm6.webp",
]
return predefined_images
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return the image, seed, and updated gallery
return image, seed, load_generated_images()
examples = [
"Claude Monet's 1916 painting, Water Lilies, which is currently on display at the Metropolitan Museum of Art. The painting depicts a tranquil pond with water lilies floating on the surface, surrounded by lush green foliage and a variety of colorful flowers. The colors of the flowers range from bright pinks and purples to deep blues and greens, creating a peaceful and calming atmosphere. [trigger]",
"Claude Monet's 1869 masterpiece, The Magpie, showcasing a snow-covered rural landscape at dawn. A single black magpie perches on a wooden gate, contrasting against the pristine white snow. The scene captures the subtle interplay of light and shadow on the snow's surface, with delicate blue-gray tones in the shadows and warm golden hints where sunlight touches the snow-laden branches. [trigger]",
"Claude Monet's Impression, Sunrise (1872), depicting the port of Le Havre at dawn. The orange sun hangs low in a misty gray-blue sky, its reflection dancing across the rippling harbor waters. Small boats appear as dark silhouettes against the luminous morning light, while industrial chimneys in the background release wisps of smoke into the atmospheric scene. [trigger]",
"Claude Monet's Rouen Cathedral series (1892-1894), focusing on the western facade at sunset. The gothic architecture is bathed in warm golden light, with deep purple shadows in the intricate stone carvings. The cathedral's spires reach toward a sky painted in soft pinks and lavenders, showcasing Monet's masterful handling of light and atmospheric effects. [trigger]",
"Claude Monet's Japanese Bridge at Giverny (1899), featuring the iconic green curved bridge spanning his water garden. Clusters of purple and white wisteria cascade from above, their reflections merging with the lily pads below in the tranquil pond. Weeping willows frame the scene in characteristic Monet brushstrokes, creating a dreamy, impressionist atmosphere. [trigger]",
"Claude Monet's Haystacks at Sunset (1890), showing golden wheat stacks in a field at dusk. The massive forms of the haystacks stand silhouetted against a dramatic sky painted in bold strokes of orange, pink, and deep purple. The surrounding field catches the last rays of sunlight, creating a patchwork of warm earth tones and long blue-violet shadows. [trigger]"
]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
with gr.Tabs() as tabs:
with gr.Tab("Generation"):
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
with gr.Tab("Gallery"):
gallery_header = gr.Markdown("### Generated Images Gallery")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=6,
show_label=False,
value=load_generated_images(),
elem_id="generated_gallery",
height="auto"
)
refresh_btn = gr.Button("🔄 Refresh Gallery")
# Add sample gallery section at the bottom
gr.Markdown("### Claude Monet Style Examples")
predefined_gallery = gr.Gallery(
label="Sample Images",
columns=3,
rows=2,
show_label=False,
value=load_predefined_images()
)
# Event handlers
def refresh_gallery():
return load_generated_images()
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, generated_gallery],
)
demo.queue()
demo.launch() |