File size: 5,069 Bytes
a490149
 
51a7d9e
9e9c8af
bd34f0b
9e9c8af
edb9e8a
51a7d9e
35f258a
137748f
38d1e5d
35f258a
e272162
35f258a
 
51a7d9e
137748f
51a7d9e
9e9c8af
137748f
bd34f0b
9e9c8af
bd34f0b
 
51a7d9e
2024746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8830af9
133be07
bd34f0b
9e9c8af
 
 
51a7d9e
 
 
 
3b9cb87
c9dfe44
3b9cb87
bd34f0b
639e063
edb9e8a
92e7c12
edb9e8a
bd34f0b
 
 
51a7d9e
 
 
922f584
51a7d9e
edb9e8a
 
 
51a7d9e
edb9e8a
 
 
 
51a7d9e
a3e36c2
51a7d9e
781217c
51a7d9e
 
 
 
 
 
579ca70
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2eb9e
51a7d9e
 
 
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28514c1
bd34f0b
 
 
51a7d9e
 
9e9c8af
 
 
 
d217d72
 
 
 
 
57f7053
51a7d9e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread

device = "auto"
model_id = "ibm-granite/granite-3.0-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.0-8b-base")
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device)
model.eval()
# change input text as desired

TITLE = "<h1><center>ibm-granite/granite-3.0-8b-instruct Chat webui</center></h1>"

DESCRIPTION = """
<h3>MODEL: <a href="https://huggingface.co/ibm-granite/granite-3.0-8b-instruct">ibm-granite/granite-3.0-8b-instruct</a></h3>
<center>
<p>This model is designed for conversational interactions.</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
.chatbox .messages .message.user {
    background-color: #e1f5fe;
}
.chatbox .messages .message.bot {
    background-color: #eeeeee;
}
"""

@spaces.GPU(duration=120)
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
    print(f'Message: {message}')
    print(f'History: {history}')
    
    conversation = []
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    conversation.append({"role": "user", "content": message})
    
    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=penalty,
        max_new_tokens=max_new_tokens, 
        do_sample=True, 
        temperature=temperature,
        eos_token_id=[2],
    )
    
    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

chatbot = gr.Chatbot(height=500)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        theme="soft",
        retry_btn=None,
        undo_btn="Delete Previous",
        clear_btn="Clear",
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Explain Deep Learning as a pirate."],
            ["Give me five ideas for a child's summer science project."],
            ["Provide advice for writing a script for a puzzle game."],
            ["Create a tutorial for building a breakout game using markdown."],
            ["超能力を持つ主人公のSF物語のシナリオを考えてください。伏線の設定、テーマやログラインを理論的に使用してください"],
            ["子供の夏休みの自由研究のための、5つのアイデアと、その手法を簡潔に教えてください。"],
            ["パズルゲームのスクリプト作成のためにアドバイスお願いします"],
            ["マークダウン記法にて、ブロック崩しのゲーム作成の教科書作成してください"],
            ["お笑いのトンチ大会のお題を考えてください"],
            ["日本語の慣用句、ことわざについての試験問題を考えてください"],
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()