Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,14 @@ from datetime import datetime
|
|
13 |
import json
|
14 |
import gradio as gr
|
15 |
import re
|
16 |
-
from unsloth import FastLanguageModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
class DocumentRetrievalAndGeneration:
|
18 |
def __init__(self, embedding_model_name, lm_model_id, data_folder):
|
19 |
# hf_token = os.getenv('HF_TOKEN')
|
@@ -64,10 +71,10 @@ class DocumentRetrievalAndGeneration:
|
|
64 |
return generate_text
|
65 |
def initialize_llm2(self,model_id):
|
66 |
|
67 |
-
tokenizer =
|
68 |
-
model =
|
69 |
-
|
70 |
-
|
71 |
# return generate_text
|
72 |
|
73 |
def generate_response_with_timeout(self, model_inputs):
|
@@ -131,18 +138,9 @@ class DocumentRetrievalAndGeneration:
|
|
131 |
|
132 |
# decoded = self.llm.tokenizer.batch_decode(generated_ids)
|
133 |
# generated_response = decoded[0]
|
134 |
-
|
135 |
-
|
136 |
-
[
|
137 |
-
alpaca_prompt.format(
|
138 |
-
"", # instruction
|
139 |
-
prompt, # input
|
140 |
-
"", # output - leave this blank for generation!
|
141 |
-
)
|
142 |
-
], return_tensors = "pt")#.to("cuda")
|
143 |
|
144 |
-
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
145 |
-
tokenizer.batch_decode(outputs)
|
146 |
match1 = re.search(r'\[/INST\](.*?)</s>', generated_response, re.DOTALL)
|
147 |
|
148 |
match2 = re.search(r'Solution:(.*?)</s>', generated_response, re.DOTALL | re.IGNORECASE)
|
|
|
13 |
import json
|
14 |
import gradio as gr
|
15 |
import re
|
16 |
+
# from unsloth import FastLanguageModel
|
17 |
+
|
18 |
+
import transformers
|
19 |
+
from transformers import BloomForCausalLM
|
20 |
+
from transformers import BloomForTokenClassification
|
21 |
+
from transformers import BloomForTokenClassification
|
22 |
+
from transformers import BloomTokenizerFast
|
23 |
+
import torch
|
24 |
class DocumentRetrievalAndGeneration:
|
25 |
def __init__(self, embedding_model_name, lm_model_id, data_folder):
|
26 |
# hf_token = os.getenv('HF_TOKEN')
|
|
|
71 |
return generate_text
|
72 |
def initialize_llm2(self,model_id):
|
73 |
|
74 |
+
tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-1b3", local_files_only=True)
|
75 |
+
model = BloomForCausalLM.from_pretrained("bigscience/bloom-1b3", local_files_only=True)
|
76 |
+
result_length = 200
|
77 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
78 |
# return generate_text
|
79 |
|
80 |
def generate_response_with_timeout(self, model_inputs):
|
|
|
138 |
|
139 |
# decoded = self.llm.tokenizer.batch_decode(generated_ids)
|
140 |
# generated_response = decoded[0]
|
141 |
+
generated_response=tokenizer.decode(model.generate(inputs["input_ids"], max_length=result_length,no_repeat_ngram_size=2)[0])
|
142 |
+
print(generated_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
|
|
|
|
144 |
match1 = re.search(r'\[/INST\](.*?)</s>', generated_response, re.DOTALL)
|
145 |
|
146 |
match2 = re.search(r'Solution:(.*?)</s>', generated_response, re.DOTALL | re.IGNORECASE)
|