|
import torch |
|
|
|
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() |
|
|
|
|
|
import requests |
|
import PIL |
|
from torchvision import transforms |
|
|
|
|
|
response = requests.get("https://git.io/JJkYN") |
|
labels = response.text.split("\n") |
|
|
|
def classify_image(image_filepath): |
|
PIL_image = PIL.Image.open(image_filepath).convert('RGB') |
|
transformations = transforms.Compose([ |
|
transforms.Resize(size = (224,224)), |
|
transforms.ToTensor(), |
|
]) |
|
image_tensors = transformations(PIL_image).unsqueeze(0) |
|
with torch.no_grad(): |
|
prediction = torch.nn.functional.softmax(model(image_tensors)[0], dim=0) |
|
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} |
|
return confidences |
|
|
|
|
|
import gradio as gr |
|
|
|
def display_model_details(model_details): |
|
return f"**Model Details:**\n\n{model_details}" |
|
|
|
with gr.Blocks(title="Image Classification for 1000 Objects", css=".gradio-container {background:#FFD1DC;}") as demo: |
|
gr.HTML("""<div style="font-family:'Calibri', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:black;">Image Classification for 1000 Objects</div>""") |
|
|
|
gr.Markdown( |
|
""" |
|
# Enter Model Details |
|
|
|
Please provide the necessary information about your model in the text box below. |
|
""" |
|
) |
|
input_box = gr.Textbox(placeholder="Enter model details") |
|
output_box = gr.Markdown() |
|
|
|
input_box.change(display_model_details, input_box, output_box) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(): |
|
input_image = gr.Image(type="filepath", image_mode="L") |
|
output_label = gr.Label(label="Probabilities", num_top_classes=3) |
|
|
|
send_btn = gr.Button("Infer") |
|
send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label) |
|
|
|
with gr.Row(): |
|
gr.Examples(['./lion.jpg'] , label='Sample images : Lion', inputs=input_image) |
|
gr.Examples(['./cheetah.jpg'], label='Cheetah' , inputs=input_image) |
|
gr.Examples(['./eagle.jpg'], label='Eagle' , inputs=input_image) |
|
gr.Examples(['./indigobird.jpg'], label='Indigo Bird' , inputs=input_image) |
|
gr.Examples(['./aircraftcarrier.jpg'], label='Aircraft Carrier' , inputs=input_image) |
|
gr.Examples(['./acousticguitar.jpg'], label='Acoustic Guitar' , inputs=input_image) |
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.launch(debug=True, share=True) |
|
|