Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import BertTokenizerFast, BertForSequenceClassification | |
def predict_news_category(text, model, tokenizer): | |
# Tokenize input text | |
inputs = tokenizer(text, truncation=True, padding=True, max_length=512, return_tensors='pt') | |
# Predict | |
outputs = model(**inputs) | |
probs = outputs[0].softmax(1) | |
# Get the predicted category | |
_, predicted_category = torch.max(probs, dim=1) | |
return predicted_category.item() | |
# Load your model | |
model = BertForSequenceClassification.from_pretrained('akhil2808/EPICS-PROJECT') | |
model.eval() # Set the model to evaluation mode | |
# Load tokenizer | |
tokenizer = BertTokenizerFast.from_pretrained('akhil2808/EPICS-PROJECT') | |
# Function to predict news category | |
def detect_news_category(text): | |
category = predict_news_category(text, model, tokenizer) | |
# Map the prediction to fake or real news | |
prediction_dict = {1: 'Real News', 0: 'Fake News'} | |
return prediction_dict[category] | |
iface = gr.Interface(fn=detect_news_category, | |
inputs=gr.inputs.Textbox(lines=7, placeholder='News Here...'), | |
outputs='text', | |
title='Disinformation Detector', | |
description='In the age of information, disinformation spreads rapidly. Fake news can cause substantial harm and mislead people. Therefore, it\'s crucial to detect and debunk fake news. This tool helps to detect disinformation by classifying the news as "Real" or "Fake". Powered by Group 40.', | |
theme='huggingface') | |
iface.launch() | |